Welcome to Masaya Matsuura's Page |
松浦 真也
「スウェーデン語の基本単語 文法+基本単語3000」
三修社, 2010. |
[1] M. Matsuura, ``Asymptotic behaviour of the maximum curvature of Lame curves,'' Journal for Geometry and Graphics Vol. 18, no. 1, 2014, 45-59. [2] M. Matsuura, ``On a recursive method including both CG and Burg's algorithms,'' Applied Mathematics and Computation, Vol. 219, no. 3, 2012, 773-780. [3] M. Matsuura, ``A note on generalized G-matrices,'' Linear Algebra and its Applications, Vol. 436, no. 9, 2012, 3475-3479. [4] M. Matsuura, ``Decompositions, dilations and compressions of discrete-time stochastic processes,'' Universal Journal of Mathematics and Mathematical Sciences, Vol.1, no. 1, 2012, 57-82. [5] M. Klimek, M. Matsuura, Y. Okabe, ``Stochastic flows and finite block frames,'' Journal of Mathematical Analysis and Applications, vol. 342, no. 2, 2008, 816-829. [6] S. Nakamula, M. Takeo, Y. Okabe, M. Matsuura, ``Automatic seismic wave arrival detection and picking with stationary analysis: Application of the KM2O-Langevin equations'' Earth Planets Space, Vol. 59, No. 6, 2007, 567-577. [7] M. Takeo, H. Ueda, Y. Okabe and M. Matsuura, ``Waveform characteristics of deep low-frequency earthquakes: time series evolution based on the theory of the KM2O-Langevin equation,'' Geophysical Journal International, vol. 165, 2006, 87-107. [8] M. Matsuura, `` Relations among the minimum norm coefficients for degenerate nonstationary flows,'' SIAM Journal on Matrix Analysis and Applications, vol. 27, No. 3, 2005, 654--664. [9] Y. Okabe and M. Matsuura, ``Chaos and KM2O-Langevin equations,'' Bulletin of Informatics and Cybernetics, vol. 37, 2005, 73--107. [10] Y. Okabe and M. Matsuura, ``On non-linear filtering problems for discrete time stochastic processes,'' J. Math. Soc. Japan, vol. 57, No. 4, 2005, 1067-1076. [11] M. Matsuura, ``An axiomatic approach to block decompositions of rings,'' Journal of Algebra, vol. 284, 2005, 578--592. [12] M. Matsuura, ``On a new fluctuation-dissipation theorem for degenerate stationary flows,'' Methodology and Computing in Applied Probability, vol. 5, No. 3, 2003, 369-387. [13] M. Matsuura, ``A generalization of Moore-Penrose biorthogonal systems,'' Electronic Journal of Linear Algebra, vol. 10, 2003, 146--154. [14] M. Matsuura and Y. Okabe, ``On the theory of KM2O-Langevin equations for non-stationary and degenerate flows,'' J. Math. Soc. Japan, vol. 55, No. 2, 2003, 523-563. [15] M. Matsuura, ``On the Craig-Sakamoto theorem and Olkin's determinantal result ,'' Linear Algebra Appl., vol. 364, 2003, 321-323. [16] Y. Okabe, M. Matsuura and M. Klimek, ``On a method for detecting certain signs of stock market crashes by non-linear stationarity tests,'' Int. J. of Pure and Appl. Math., vol. 3, No.4, 2002, 443-484. [17] M. Klimek, E. Karlsson, M. Matsuura and Y. Okabe, ``A geometric proof of the fluctuation-dissipation theorem for the KM2O-Langevin equation,'' Hokkaido Math. J., vol. 31, No.3, 2002, 615-628. [18] M. Matsuura and Y. Okabe, ``On a non-linear prediction problem for one-dimensional stochastic processes,'' Japan. J. of Math., vol. 27, No.1, 2001, 51-112. [19] Y. Okabe and M. Matsuura, ``On the theory of KM2O-Langevin
equations for stationary flows (3):
extension theorem,'' Hokkaido Math. J., vol. 29, No.2, 2000,
369-382. |
・松浦 真也 「時系列のユニバーサルモデリングとシミュレーション」 (小特集: 超ロバスト計算原理とモデリング・シミュレーション), シミュレーション, Vol.26, No.2 2007, 107-111. ・松浦 真也 「退化した流れに対するKM2Oランジュヴァン方程式論」 (博士論文), 東京大学大学院工学系研究科計数工学専攻, 2000年. ・松浦 真也 「現代物理学とどう接するべきか」 パリティ, Vol. 5, No. 10, 55-57,1990年10月. ![]() Last update January 31, 2015 |