第1章 easy integration

1.1 構成

- 1.2 準備
- 1.3 測度論-1
- 1.4 積分論-1
- 1.5 積分論-2
- 1.6 練習問題

1.2 測度論の準備

1.2.1 動機づけ

複雑な図形 - 海岸線の長さを測る

1.2.2 集合と位相

「もの」の集まりを集合という。ただし、「もの」については定義しない。「もの」を集合の要素(元)という。

数学では要素が集合に属するか否かが判別できることを要請する。すなわち、 $x \in A$ または $x \notin A$ がなりたつ。

Cを条件として

$$A = \{x; x \bowtie C \in \mathcal{A} \in \mathcal{A}$$

とかくことができる(集合の内包的記法)。

 $A \subset B$ とは、「A の任意の元a について、a は B の元である」ということである。 $A \subset B$ かつ $B \subset A$ であるとき、A = B とかき、「A と B は相等しい」という。

 $A \cup B, A \cap B$ は既知のとおり定義する。 $A \setminus B = A \cap B^c$ とする。 $A \cup B^c = A^c \cap B^c, A \cap B^c = A^c \cup B^c$ 。これをドモルガンの法則という。

Zをひとつのパラメータ集合として、Zの各元nに一つの集合 A_n が対応しているとする。

$$\bigcup_{n\in Z}A_n=\{x;\mathfrak{b}\,\mathfrak{d}\,n\in Z\,\mathfrak{b}^{\sharp}\mathfrak{b}\,\mathfrak{d}\,\tau\,x\in A_n\}$$

$$\bigcap_{n\in\mathbb{Z}}A_n=\{x;$$
すべての $n\in\mathbb{Z}$ に対し $x\in A_n\}$

である。ドモルガンの法則は

$$(\bigcup_{n\in\mathbb{Z}}A_n)^c = \bigcap_{n\in\mathbb{Z}}A_n^c, \ (\bigcap_{n\in\mathbb{Z}}A_n)^c = \bigcup_{n\in\mathbb{Z}}A_n^c$$

に拡張される。

集合の列 $A_1,A_2,...$ が与えられているとき、 $\bigcap_{k=1}^\infty \cup_{n=k}^\infty A_n$ を $(A_n)_{n=1}^\infty$ の上極限といい、 $\limsup_{n\to\infty} A_n$ で表す。 $\bigcup_{k=1}^\infty \bigcap_{n=k}^\infty A_n$ を $(A_n)_{n=1}^\infty$ の下極限といい、 $\liminf_{n\to\infty} A_n$ で表す。当然 $\liminf_{n\to\infty} A_n$ こ $\limsup_{n\to\infty} A_n$ であるが、 $\liminf_{n\to\infty} A_n$ であるとき、この集合を $\lim_{n\to\infty} A_n$ とかく。

問題

集合列 $\{A_n\}, A_n = ((-1/2)^{n^2}, 2^n)$ 開区間について、

$$\limsup_{n\to\infty} A_n, \ \liminf_{n\to\infty} A_n$$

をもとめよ。

とくに実数全体は集合である。これを ${\bf R}$ とかく。実数には順序がついている。つまり、 $a,b\in {\bf R}$ ならば、a< b,a=b,a>b のいづれか一つがなりたつ。

 $E \subset \mathbf{R}$ とする。もし

すべての $x \in E$ に対しx < bとなる

ような $b \in R$ が存在すれば、「E は上に有界」といい、b を E の上界という。B を E のすべての上界からなる集合とする。もし

すべての $b \in B$ に対しc < bとなる

ような $c \in B$ が存在すれば、c を E の上限といい、 $\sup E$ (または $\sup_{x \in E} x$) とかく。E の下限 $\inf E$ (または $\inf_{x \in E} x$) は

$$\inf_{x \in E} x = -\sup_{x \in E} (-x)$$

によって定義する。

開集合は開集合の公理を満たす集合である。開集合の公理は近傍により定義する。閉集合は、その補集合が開集合となる集合である。集合 X とその中の開集合の族 O の組 (X,O) を位相空間という。とくに X 上の距離関数から開集合を決めた位相空間を距離空間という。

集合族 一つの集合 Ω が与えられ、 Ω のいくつかの部分集合の集まり F を考える。F が次を満たすとき、集合族(または有限加法族)という。

 $(1)\emptyset \in \mathcal{F}$

 $(2)A \in \mathcal{F}$ ならば $A^c \in \mathcal{F}$

 $(3)A, B \in \mathcal{F}$ ならば $A \cup B \in \mathcal{F}$

 \mathcal{F} がさらに次を満たすとき、 \mathcal{F} は σ -集合族(σ -加法族)という:

$$(4)A_1, A_2, A_3, \dots \in \mathcal{F}$$
 ならば $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

(2) の条件により、「開集合の公理」とは異なることに注意せよ。

1.3 測度論-1

以下では、基礎となる集合を、主に、 $\Omega = \mathbf{R}$ ないし $\Omega = \mathbf{R}^n, n = 2, 3, \dots$ として述べていく。測度論の議論は、 Ω を、開集合の定義できるような(位相のついた)一般の集合として展開することができる。

1.3.1 ジョルダン測度

正方形

$$Q = \{(x_1, x_2); a \le x_1 \le a + l, b \le x_2 \le b + l\}$$

に対して、Qの "面積" を $|Q| = l^2$ とする。

 $A \subset \mathbf{R}^2$ を一般の図形とする。 $\epsilon > 0$ を決めて固定する。A の中に一辺 $\epsilon > 0$ の正方形を重なり合わないように敷き詰める。各小正方形の"面積"は ϵ^2 であり、図のように敷き詰めた正方形の面積の総和を $c_\epsilon(A)$ とかく。 $\epsilon \to \frac{\epsilon}{2}$ とすると、さらに多くの(有限個の)小正方形を敷き詰めることができる。このようにして、さらに小さな ϵ について $c_\epsilon(A)$ を計算し

$$c(A) = \sup_{\epsilon > 0} c_{\epsilon}(A)$$

とおく。これをジョルダン内容量という。([新井] 参照。) 一方、一辺 ϵ の小正方形を使って、Aを覆う。つまり、

$$A \subset \bigcup_{j=1}^{N} Q_j, Q_j$$
は一辺 ϵ の小正方形

とする。(ここで小正方形は重なり合っても構わない。)このような小正方形の面積の総和を $C_{\epsilon}(A)$ とかく。

$$C(A) = \inf_{\epsilon > 0} C_{\epsilon}(A)$$

とし、**ジョルダン外容量**という。 $\epsilon' > 0, \epsilon'' > 0$ に対してつねに

$$c_{\epsilon'}(A) \le C_{\epsilon''}(A)$$

だから、

$$c(A) \le C(A)$$

である。ここでもしc(A)=C(A)ならば、Aはジョルダン可測であるといい、上の値をAのジョルダン測度という。 $\mathbf{R}^n, n \geq 2$ の場合も同様に議論する。

なお

$$A = \{(x_1, x_2); x_i \in \mathbf{Q}, 0 \le x_i \le 1, i = 1, 2\}$$

とすると、Aはジョルダン可測でない。また、ハルナック集合はジョルダン可測でない。(このような不思議な図形たちについては、[4] の第 2 部を参照。)

1.3.2 ルベーグ外測度

 $\Omega = \mathbf{R}^n$ とし、 I をその区間

$$I = (a_1, b_1) \times (a_2, b_2) \times \dots \times (a_n, b_n)$$
$$= \{(x_1, \dots, x_n); a_i < x_j < b_j, j = 1, \dots, n\}$$

とする。*I* の測度 |*I*| を

$$|I| = \prod_{j=1}^{n} (b_j - a_j)$$

とする。

任意の集合 $E \subset \mathbf{R}^n$ に対して、和が E を覆うような高々加算個の開区間の組 $\{I_{\lambda}\}$:

$$\bigcup_{\lambda \in \Lambda} I_{\lambda} \supset E$$

を考える。このようなについての下限

$$\inf_{\{I_{\lambda}\}} \sum_{\lambda \in \Lambda} |I_{\lambda}|$$

 $e^{k}(E)$ とかいての**ルベーグ外測度**という。 ルベーグ外測度は次の性質をもつ:

$$(1)m^{*}(\emptyset) = 0, m^{*}(\{a\}) = 0$$

$$(2)E_{1} \subset E_{2}$$
ならば $m^{*}(E_{1}) \leq m^{*}(E_{2})$

$$(3)E_{1}, E_{2}, E_{3}, \dots \subset \mathbf{R}^{n}$$
に対して
$$m^{*}(\bigcup_{n=1}^{\infty} E_{n}) \leq \sum_{n=1}^{\infty} m^{*}(E_{n})$$
(3.1)

(4)E が、互いに素な区間 J_n をつかって $E = \bigcup_{n=1}^{\infty} J_n$ と表されるとき

$$m^*(E) = \sum_{n=1}^{\infty} m^*(J_n)$$
 (3.2)

- (3.1) の性質を**劣加法性**という。(3.2) の性質を**完全加法性**という。 証明
- (1) 空集合、1点集合はいかなる小正方形でも覆える。
- (2) $E_2 = E_1 \cup (E_2 \setminus E_1)$ とかく。 $\{I_{\lambda_1}, I_{\lambda_2}, ...\}$ が E_2 を覆えば、それらは E_1 を覆う。よって

$$m^*(E_2) = \inf_{\{I_{\lambda_i}\}} \sum_i |I_{\lambda_i}| \ge \inf_{\{I'_{\lambda_i}\}, E_1 \subset \cup I'_{\lambda_i}} \sum_i |I'_{\lambda_i}| = m^*(E_1)$$

(3) l を固定する。 $m^*(E_l)$ の定義から、任意の $\epsilon>0$ に対し、区間 $I^{(l)}_{\lambda_1},I^{(l)}_{\lambda_2},\dots$ で

$$E_l \subset \bigcup_i I_{\lambda_i}^{(l)}, \quad \sum_i |I_{\lambda_i}^{(l)}| < m^*(E_l) + \frac{\epsilon}{2^l}$$

となるものが存在する。これより

$$\bigcup_{l=1}^{\infty} E_l \subset \bigcup_{l=1}^{\infty} \bigcup_{i=1}^{\infty} I_{\lambda}^{(l)}$$

8

よって

$$m^*(\cup_{l=1}^{\infty} E_l) \le \sum_{l} \sum_{i} |I_{\lambda_i}^{(l)}|$$

$$<\sum_{l=1}^{\infty}(m^*(E_l)+\frac{\epsilon}{2^l})\leq \sum_l m^*(E_l)+\epsilon$$

 ϵ は任意だから、 $\epsilon \to 0$ とすればよい。

(4) 外測度 $m^*(E)$ の定義で infimum を達成する区間 I_{λ} が実際に存在する $(I_{\lambda_n} = J_n)$ ので、

$$m^*(E) = \inf_{\{I_{\lambda}\}} \sum_{\lambda} |I_{\lambda}| = \sum_{n} |J_n|$$

証明終わり

1.3.3 ルベーグ内測度

S を \mathbf{R}^n の有界集合とし、 $S \subset J$ なる長方形(n 次元区間)J を 1 つとって固定する。S のルベーグ内測度 $m_*(S)$ を

$$m_*(S) = |J| - m^*(J \cap S^c)$$

と定義する。これは「外側から測った外測度」である。 ルベーグ内測度は次の性質をもつ:

$$(1)0 \le m_*(S) < \infty$$

$$(2)m_*(S) \le m^*(S)$$

$$(3)S \subset T$$
 に対して $m_*(S) \leq m_*(T)$

$$(4)I$$
 が n 次元区間ならば $m_*(I) = |I|$

証明

- $(1)\ |J|<+\infty, m^*(J\cap S^c)\leq m^*(J)=|J|\ \sharp\ \mathfrak{H}\ .$
- (2) $J=S\cup(J\setminus S)$ だから、外測度の劣加法性より $|J|=m^*(J)\leq m^*(S)+m^*(J\setminus S)$ 。 よって $m_*(S)=|J|-m^*(J\setminus S)\leq m^*(S)$
 - (3) T を含む長方形 J に対し、 $S \subset T$ より $J \setminus S \supset J \setminus T$ 。よって

$$m^*(J \setminus S) \ge m^*(J \setminus T)$$

これより

$$m_*(S) = |J| - m^*(J \setminus S) \le |J| - m^*(J \setminus T) = m_*(T)$$

(4) I を含む長方形 J として I 自身をとる。すると

$$m_*(I) = |I| - m^*(I \setminus I) = |I| - m^*(\emptyset) = |I|$$

証明終わり

1.3.4 ルベーグ可測集合

 \mathbf{R}^n の有界な集合 S が

$$m^*(S) = m_*(S)$$

をみたすとき、S をルベーグ可測集合という。

内測度の定義から、これは $S \subset J$ なる長方形 (n次元区間) Jについて

$$m^*(J \cap S^c) + m^*(S) = |J|$$
 (3.3)

と同値である。

なお、これをもっと強めて

すべての
$$E$$
 について $m^*(E \cap S) + m^*(E \cap S^c) = m^*(E)$ (3.4)

とき、Sをカラテオドリ可測集合という。

注意カラテオドリ可測集合はルベーグ可測集合である。カラテオドリ可測集合は、(外測度の定義された)一般の集合上で定義できる。 \mathbf{R}^n の上ではカラテオドリ可測集合とルベーグ可測集合は一致する。

1.3.5 ルベーグ測度空間

カラテオドリ可測集合の全体をMで表す。 $E \in M$ に対して

$$m(E) = m^*(E)$$

とおき、Eの測度という。3つ組 $(\mathbf{R}^n, \mathcal{M}, m)$ をルベーグ測度空間という。

定理1

M は σ-加法族をなす。 すなわち

$$(1)\emptyset \in \mathcal{M}$$

 $(2)A \in \mathcal{M}$ \Leftrightarrow $\exists A^c \in \mathcal{M}$, $A_1 \in \mathcal{M}$, $A_2 \in \mathcal{M}$ \Leftrightarrow $\exists A_1 \cap A_2 \in \mathcal{M}$, $A_1 \cup A_2 \in \mathcal{M}$.

$$(3)A_1, A_2, \dots \in \mathcal{M}$$
 ならば $\bigcup_{n=1}^{\infty} A_n \in \mathcal{M}$

証明

- $(1) m^*(E \cap \emptyset) + m^*(E \cap \emptyset^c) = m^*(\emptyset) + m^*(E) = m^*(E) \ \ \ \emptyset \ \ \emptyset \in \mathcal{M}_{\bullet}$
- (2) $A \in \mathcal{M}$ とすると、(3.4) において S と S^c の役割が対称であるから、 $A^c \in \mathcal{M}$ 。 $A_1, A_2 \in \mathcal{M}$ とする。(3.4) より、任意の集合 E について

$$m^*(E) = m^*(E \cap A_1) + m^*(E \cap A_1^c)$$

$$= m^*(E \cap A_1 \cap A_2) + m^*(E \cap A_1 \cap A_2^c) + m^*(E \cap A_1^c)$$

 $S'=A_1, E'=E\cap\{(A_1\cap A_2^c)\cup A_1^c\}$ として (3.4) を適用する。 $E'\cap S'=E\cap A_1\cap A_2^c, E'\cap S'^c=E\cap A_1^c$ となるから

$$(R.H.S.) = m^*(E \cap A_1 \cap A_2) + m^*(E \cap \{(A_1 \cap A_2^c) \cup A_1^c\})$$

$$= m^*(E \cap (A_1 \cap A_2)) + m^*(E \cap \{(A_1 \cap A_2)^c\})$$

これより $A_1 \cap A_2 \in \mathcal{M}$ 。また、 $A_1 \cup A_2 = (A_1 \cap A_2)^c$ より、 $A_1 \cup A_2$ 。

(3) (step 1) $[A_1, A_2, ...$ が互いに素な場合]

 $A_1,A_2,...\in\mathcal{M},A_i\cap A_j=\emptyset\ (i\neq j)$ とする。 $A=\cup_n A_n$ とおく。 $A^c=\cap_{n=1}^\infty A_n^c$ であるから、任意のn について $A_1^c\cap\cdots\cap A_n^c\supset A^c$ 。よって $m^*(E\cap A_1^c\cap\cdots\cap A_n^c)\geq m^*(E\cap A^c)$ 。

ここで $A_1 \in \mathcal{M}$ より

$$m^*(E) = m^*(E \cap A_1) + m^*(E \cap A_1^c)$$

ここで $A_1^c = (A_1^c \cap A_2) \cup (A_1^c \cap A_2^c)$ より

$$(R.H.S.) = m^*(E \cap A_1) + m^*(E \cap A_1^c \cap A_2) + m^*(E \cap A_1^c \cap A_2^c)$$

 $E' = E \cap \{A_1 \cup (A_1^c \cap A_2)\}, S' = A_1^c$ とおくと、 $E' \cap S' = E \cap A_1^c \cap A_2, E' \cap S'^c = E \cap A_1$ 、また $A_1 \cup (A_1^c \cap A_2) = A_1 \cup A_2$ より

$$(R.H.S.) = m^*(E \cap (A_1 \cup A_2)) + m^*(E \cap (A_1 \cup A_2)^c)$$

$$= m^*(E \cap A_1) + m^*(E \cap A_2) + m^*(E \cap (A_1 \cup A_2)^c)$$

 $= m^*(E \cap A_1) + m^*(E \cap A_2) + \dots + m^*(E \cap A_n) + m^*(E \cap A_1^c \cap A_2^c \cap \dots \cap A_n^c)$ $\geq m^*(E \cap A_1) + m^*(E \cap A_2) + \dots + m^*(E \cap A_n) + m^*(E \cap A^c)$ $\sharp \supset \mathcal{T}$

$$m^*(E) \ge \sum_{n=1}^{\infty} m^*(E \cap A_n) + m^*(E \cap A^c)$$

> $m^*(E \cap A) + m^*(E \cap A^c)$

ただし、最後の不等式は m* の劣加法性による。

一方、 $m^*(E) \le m^*(E \cap A) + m^*(E \cap A^c)$ はつねに成り立つので等号が成り立ち、 $A \in \mathcal{M}$ である。

 $(step 2) [A_1, A_2, ... が互いに素とは限らない場合]$

 $B_1 = A_1, B_n = A_n \setminus (\bigcup_{j=1}^{n-1} A_j), n \ge 2$ とおくと (B_i) は互いに素である。 step 1 より $\bigcup_n B_n \in \mathcal{M}$ だから、 $\bigcup_n A_n = \bigcup_n B_n \in \mathcal{M}$ 。照明終

どんな集合が可測か

命題1 \mathbb{R}^n の開集合は可測集合である。 \mathbb{R}^n の有界な閉集合は可測集合である。

この定理の証明のためには次の補題が必要となる。

補題 $A \subset \mathbf{R}^n$ は $m^*(A) < +\infty$ を満たすとする。このとき

$$\lim_{N\to\infty} m^*(A\cap \bar{Q}_N) = m^*(A)$$

ただし、 $Q_N=[-N,N)\times[-N,N)$ とし、 \bar{Q}_N はその閉包である。 [新井] 補題 3.8 参照。

命題 1 の証明 F を有界な閉集合とする。 $F_N=F\cap \bar{Q}_N$ とおくと、 F_N は有界な閉集合である。 $F_N\subset F$ より、 $m^*(F_N)\leq m_*(F)$ となる 1 。また、補題より

$$m^*(F) = \lim_{N \to \infty} m^*(F_N) \le m_*(F)$$

 $^{^1}$ ここでは ${\bf R}^n$ 上の内測度についての同値な定義: $m_*(A)=\sup\{m^*(K);K$ は有界閉集合で $K\subset A\}$ を使う。inner regularity という。この証明については [新井]3.16'を参照。

一方、外測度の定義より

$$m^*(F) \ge m_*(F)$$

よって $m^*(F) = m_*(F)$ となり、Fは可測である。

また、開集合は閉集合の補集合であるから、定理1より開集合も可測となる。g.e.d.

次の3つで特徴付けられる集合をn次元ボレル集合といい、その全体を $\mathcal B$ で表す。

- (1) $[a_1,b_1) \times ... \times [a_n,b_n)$ で表される集合はn 次元ボレル集合である。
- (2) 及は補集合と加算和をとる操作に関して閉じている。
- (3) \mathcal{B} は (1), (2) の性質をもつ集合族のうち最小のものである。

n-次元ボレル集合族を \mathcal{B}_n とかくこともある。

定理2

n 次元ボレル集合はルベーグ可測集合である。

証明 $[a_1,b_1) \times ... \times [a_n,b_n)$ の形の集合は開集合により表現できる。たとえば、 $[a,b) = \bigcap_{n=1}^{\infty} (a-\frac{1}{n},b)$ 。よって、命題 1、定理 1 より、 $[a_1,b_1) \times ... \times [a_n,b_n)$ の形の集合はすべて \mathcal{M} に含まれる。定理 1 より \mathcal{M} は σ -加法族であり、 \mathcal{B} も σ -加法族であるから、 $\mathcal{B} \subset \mathcal{M}$ 。証明終

この定理より $\mathcal{B} \subset M$ である。 \mathcal{B} (乃至 \mathcal{B}_n) はたいへん大きな集合族であり、"(普段出てくる)大抵の集合"を含んでいる。以下で出てくる命題、定理において M を \mathcal{B} と読み替えても、大きな問題は起こらない。なお、ボレル集合族は、開集合が定義できるような一般の集合上で定義できる。ボレル集合族上の測度をボレル測度という。

集合 E で E は可測かつ m(E) = 0 となるものを零集合という。

零集合の例

1 点集合 2 $\{x\}, x \in \mathbf{R}$

有理数全体 Q

 (X, \mathcal{F}) 上の、 σ -有限な2つの測度 μ, ν が共通の零集合を持つとき、それらは同値 (equivalent) という。

²Hint: consider the intervals $[x-1/k, x+1/k), k \to \infty$

関数 f(x) に対し $[f \neq 0] = \{x; f(x) \neq 0\}$ とおく。関数 f(x) で $[f \neq 0]$ が零集合となるとき、f(x) はほとんど到るところ零といい、f = 0 a.e. (almost everywhere) という。関数 f(x), g(x) があって、g - f = 0 a.e. となるとき、f と g はほとんど到るところ等しいといい、f = g a.e. とかく。

 $A \subset \Omega$ をある集合とする。A を含む最小の σ -加法族を、A から生成された σ -加法族という。ボレル集合族は、半開区間 $[a_1,b_1) \times ... \times [a_n,b_n)$ から生成された σ -加法族である。

開集合の加算個の共通部分を G_δ 集合、閉集合の加算個の和集合を F_σ 集合という。これらはボレル集合だが、ボレル集合だが G_δ でも F_σ でもない集合もある。

1.3.6 測度の性質

命題 1

 $A_1,A_2,\ldots\in\mathcal{M}$ かつ $A_i\cap A_j=\emptyset$ $(i\neq j)$ とする。 $m^*(\cup_{j=1}^\infty A_j)<+\infty$ のとき $\cup_{i=1}^\infty A_i\in\mathcal{M}$ であり、

$$m(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} m(A_j)$$
 (3.5)

である。

 Ω をある集合、M を Ω 上の可測集合の族、m を

$$m(A) = m^*(A), A \in \mathcal{M}$$

として定義する。 (Ω, \mathcal{M}, m) を測度空間という。 証明

 $A = \bigcup_{n=1}^{\infty} A_n$ とおく。定理 1 (3) より、 $A \in \mathcal{M}$ 。よって

$$m^*(E) = m^*(E \cap A) + m^*(E \cap A^c)$$

一方、定理1(3)の証明より

$$m^*(E) \ge \sum_{n=1}^{\infty} m^*(E \cap A_n) + m^*(E \cap A^c)$$

$$m^*(A) \ge \sum_{n=1}^{\infty} m^*(A_n)$$

$$m^*(A) \le \sum_{n=1}^{\infty} m^*(A_n)$$

は m^* の劣加法性よりしたがう。mの定義より(3.5)が成り立つ。証明終わり

命題 2

- (1) $m(A \cup B) = m(A) + m(B) m(A \cap B)$
- (2) 集合の増加列 $A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$ に対し

$$m(\lim_{n\to\infty} A_n) = \lim_{n\to\infty} m(A_n)$$

(3) 集合の減少列 $A_1 \supset A_2 \supset \cdots \supset A_n \supset \cdots$ に対し、 $m(A_1) < +\infty$ ならば

$$m(\lim_{n\to\infty} A_n) = \lim_{n\to\infty} m(A_n)$$

(4) 任意の $A_1, A_2, A_3, ...$ に対し

$$m(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} m(A_n)$$

(5)

$$m(\liminf_{n\to\infty} A_n) \le \liminf_{n\to\infty} m(A_n)$$

(6) $m(\cup_{n=1}^{\infty}A_n)<+\infty$ のとき

$$m(\limsup_{n\to\infty} A_n) \ge \limsup_{n\to\infty} m(A_n)$$

証明

(1) 可測性の定義(3.4)による。

$$\begin{split} m(A) &= m(A \cap (A \cap B)) + m(A \cap (A \cap B)^c) = m(A \cap B) + m(A \setminus (A \cap B)), \\ m(B) &= m(B \cap (A \cap B)) + m(B \cap (A \cap B)^c) = m(A \cap B) + m(B \setminus (A \cap B)) \\ &- \not \supset \end{split}$$

$$m(A \cup B) = m((A \cup B) \cap (A \cap B)) + m((A \cup B) \cap (A \cap B)^c)$$

$$= m(A \cap B) + m(\{(A \cap (A \cap B)^c) \cup (B \cap (A \cap B)^c)\})$$

$$= m(A \cap B) + m((A \cap (A \cap B)^c) \cap (A \cap (A \cap B)^c)) + m((B \cap (A \cap B)^c) \cap (A \cap (A \cap B)^c)^c)$$

$$= m(A \cap B) + m(A \setminus (A \cap B)) + m(B \setminus (A \cap B))$$

上の2つを最後の式に代入すれば、結論を得る。

(2) $B_1 = A_1, B_2 = A_2 \setminus A_1, ..., B_n = A_n \setminus A_{n-1}$ とおくと、 $B_i \cap B_j = \emptyset$ $(i \neq j)$ かつ $\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n, B_n \in \mathcal{M}, n = 1, 2, ...$ となる。また (1) より

$$m(A_n) = m(B_n \cup A_{n-1}) = m(B_n) + m(A_{n-1})$$

つまり
$$m(B_n) = m(A_n) - m(A_{n-1})$$

これより

$$m(\lim_{n\to\infty} A_n) = m(\cup_{n=1}^{\infty} A_n) = m(\cup_{n=1}^{\infty} B_n)$$

となるが、命題1より、右辺 = $\sum_{n=1}^{\infty} m(B_n)$

$$= \sum_{n=1}^{\infty} \{m(A_n) - m(A_{n-1})\} = \lim_{n \to \infty} m(A_n)$$

(3)

 $B_1 = A_1 \setminus A_2, B_2 = A_2 \setminus A_3, ..., B_n = A_n \setminus A_{n-1}$ とおくと、 $B_i \cap B_j = \emptyset$ $(i \neq j)$ かつ $A_1 = \bigcup_{n=1}^{\infty} A_n = (\bigcup_{n=1}^{\infty} B_n) \cup (\lim_{n \to \infty} A_n), B_n \in \mathcal{M}, n = 1, 2, ...$ となる。

 $m(A_1) < \infty$ ならば

$$m(A_1) = m(\bigcup_{n=1}^{\infty} B_n) + m(\lim_{n \to \infty} A_n)$$

ここで

$$m(\bigcup_{n=1}^{\infty} B_n) = \sum_{n=1}^{\infty} m(B_n)$$

$$= \sum_{n=1}^{\infty} \{m(A_n) - m(A_{n+1})\} = m(A_1) - \lim_{n \to \infty} m(A_n)$$

この2式より結論を得る。

(4) $B_1=A_1, B_2=A_2\setminus A_1, ...B_n=A_n\setminus (A_1\cup \cdots A_{n-1})$ とおくと、 $B_i\cap B_j=\emptyset (i\neq j)$ かつ $\cup_{n=1}^\infty A_n=\cup_{n=1}^\infty B_n, B_n\subset A_n, n=1,2,...$ となる。あとは (3.5) を使えばよい。

(5), (6) については練習問題 [11] としてある。 証明終わり

命題(5),(6)より、もし

$$\lim_{n \to \infty} A_n = \liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n$$

が存在し、かつ、 $m(\bigcup_{n=1}^{\infty} A_n) < +\infty$ ならば、

$$m(\limsup_{n\to\infty} A_n) = \limsup_{n\to\infty} m(A_n)$$

がなりたつ。

1.3.7 測度空間の例

一般の集合上でも、 \mathbf{R}^n 上と同じように、外測度から始めて、測度、可測集合を定義できる。

1 (Ω, \mathcal{M}, m) 。ここで

$$\Omega = \{1, 2, 3, 4, 5, 6\}, \mathcal{M} = \Omega$$
の部分集合全体,

$$m(\{i\}) = \frac{1}{6}, i = 1, ..., 6, m(A) = \sum_{i \in A} m(\{i\}), A \subset \Omega.$$

このとき、 $m(\emptyset) = 0$ とおくと、m(.) は (Ω, \mathcal{M}) 上の測度となる。また、 $m(\Omega) = 1$ である。これは、さいころを 1 回振ったとき出る目の確率を表す測度空間(確率空間)である。

 $2 (\Omega, \mathcal{M}, m)$, $\mathbb{Z} \mathbb{Z} \mathcal{T}$

$$\Omega = \{(i, j); i, j = 1, 2, 3, 4, 5, 6\}, \ \mathcal{M} = \Omega$$
の部分集合全体,

$$m(\{(i,j)\}) = \frac{1}{36}, i, j = 1, ..., 6, m(A) = \sum_{i \in A} m(\{(i,j)\}), A \subset \Omega.$$

このとき、 $m(\emptyset)=0$ とおくと、m(.)は (Ω,\mathcal{M}) 上の測度となる。また、 $m(\Omega)=1$ である。これは、さいころを 2回振ったとき出る目の確率を表す測度空間(確率空間)である。

3 具体例(知識の体系)

あることについて知識が深まるほど、その対象についての分割が詳しくなる。これは対象 Ω に関する可測集合の数が増え、より rich な可測集合族を構成できることを意味する。

例1 日本語とフランス語の**魚の分類**を並べる。言語による分類の詳しさの違いがよくわかる。(フランスは、大西洋沿いも地中海岸も海の幸に恵まれており、ラテン文化の影響もあって、フランス人は魚介類をよく食べる。)

和名	仏名	
鯖 (サバ)	maquereau (m)	7
鯵 (アジ)	chinchard	シャンシ
鰹 (カツオ)	bonite (f)	ポ
鰤 (ブリ) /ハマチなど	seriole	セ
(関東 - モジャコ(稚魚)→ワカシ(35cm 以下)		
→イナダ (35-60cm) →ワラサ (60-80cm)		
→ブリ (80cm 以上))		
鮪(マグロ)	thon (m)	
鮭 (サケ)	saumon	ソ
鱒 (マス)	truite (f)	トリュイット
ニジマス/虹鱒	Truite arc-en-ciel	
鯛 (タイ)(以下、鯛の仲間)	daurade (f)/dorade	ドラ
黒鯛	daurade grise	ドラードゥ・グ
黒鯛	daurade noire	ドラードノ
赤鯛	daurade rouge	ドラードゥ・ル
真鯛 (マダイ)	pageot)
平目 (ヒラメ)(以下、平目の仲間)	barbue	バルビ
平目(ヒラメ) /イシビラメ	turbot	テュル
小平目 (コビラメ)	olette	
舌平目	sole (f)	
鱈 (タラ) の一種 (以下、鱈の仲間)	aiglefin	
(タラ)	cabillaud	カ(キュ
鱈 (タラ) /イソアイナメ	colin	
小鱈	merlan	メ
鱈 (タラ) /塩タラ、干しタラ	morue (f)	モ
鰈 (カレイ)(以下、鰈の仲間(日本語にはない))	carrelet	+
鰈 (カレイ)	Flet	
鰈 (カレイ)	limande (-sole)	IJ
鰈(カレイ)	plie	
メルルーサ (アルゼンチンヘイク)	Anon	
メルルーサ	Cocochas	ココ
メルルーサ	Lieu	
メルルーサ	merlu	
鮟鱇 (アンコウ)(以下、鮟鱇の仲間)	baudroie	ボー
鮟鱇 (アンコウ)	diable de mer	ディアブル・ドゥ・
鮟鱇 (アンコウ)	lotte	
鮟鱇 (アンコウ)	poisson-pecheur	ポワッソン・ペシ

例2 **羊肉の分類**。日本では羊肉をほとんど食べない。スーパーに行ってもせいぜいラムとマトンを区別してあるくらいである。一方、ヨーロッパ人は羊肉をよく食べる。食べ心地により羊肉を詳しく分類している。ラムは若ければ若いほど取れる肉の量は少ないが、より柔らかく臭みも少なくなる。2歳以上のマトンの肉はあまり柔らかくない。

(1-i) ニュージーランドにおける羊肉の分類の定義は以下のとおりである。

ラム:生後12か月で永久門歯がない雄または雌の羊

ホゲット:永久門歯が1から2本の雌または去勢された雄の羊マトン:永久門歯が2本より多い雌または去勢された雄の羊

オーストラリアではラムの定義は以下のとおりである。

ラム: 永久門歯が0本、生後12か月までの雌または去勢された雄。 ニュージーランドでは、永久門歯が生えていても摩耗していなければラムとする。

(1-ii) その他の定義

ラム - 1歳以下の羊

ベイビーラム - 生後6から8週間で乳だけで育てた羊 スプリングラム - 生後3か月から5か月で乳だけで育てた羊 イヤリングラム - 生後12か月から24か月の羊

(2) 部位による分類

伝統的なイギリスの部位の分け方は以下のとおりである。

((首) 場所 1	場所 2	場所 3	場所 4	場所 5	場所 6 (尻)
スク	クラグエンド	ミドルネック	ベストエンド	ロイン	チャンプ	脚
	Ø	肩 (Shoulder)	胸 (Breast)	胸 (Breast)	Ø	Ø

例3 牛肉の分類。牛肉も日本文化の中では歴史が浅い。ポルトガル語(ブラジル)では牛肉を詳しく分類する。

食材用語

和名	ポルトガル名	
牛肉	Carne de vaca	(カルネ・デヴァッ)、または boi(
ヒレ肉	file mignon file mignon file mignon	(フィレ・ミニ
サーロイン	$\operatorname{contrafilre}$	(コントラフ
もも肉	alcatra alcatra	(アルカ
ランプ	picanha	(ピカー
また肉	coxao mole	(コション・モ
または	patinho	(パッチー
または	lagarto	(ラガ
すね肉	musculo	(ムス
テール	rabada	(ハバ
こぶ肉	cupim	(クッ
牛タン	lingua	() >
レバー	figado	(フィ

1.4. 積分論-1 21

1.4 積分論-1

1.4.1 可測関数

 $f(x_1,...,x_n)$ を $E \subset \mathbf{R}^n$ において定義されたある関数とする。その値は 実数または $+\infty$, $-\infty$ をとるものとする。 $B \subset \mathbf{R} \cup \{+\infty, -\infty\}$ に対し

$$[f \in B] = \{x \in E; f(x) \in B\}$$

とかく。また、 $\alpha \in \mathbf{R}$ に対し

$$[f > \alpha] = \{x \in E; f(x) > \alpha\}$$

とかく。なお、f(x) が一般の集合 X 上に定義されている場合には、 $E \subset \mathbf{R}^n$ を $E \subset X$ に読み替える。

関数 f が可測関数とは、任意の実数 α に対し $[f > \alpha] \in \mathcal{M}$ となることである。任意の実数 α に対し $[f > \alpha] \in \mathcal{B}$ となるとき、f をボレル可測関数という。

命題1

 $f: \mathbf{R}^n \to \mathbf{R}$ について、次は同値である。

- (1) f は可測
- (2) 任意の実数 α に対し $[f \ge \alpha] \in \mathcal{M}$
- (3) 任意の実数 α に対し $[f < \alpha] \in \mathcal{M}$
- (4) 任意の実数 α に対し $[f \leq \alpha] \in \mathcal{M}$

証明

- $(4)\rightarrow (1)$ $[f \leq \alpha] = [f > \alpha]^c$. 左辺 $\in \mathcal{M} \Rightarrow [f > \alpha] \in \mathcal{M}$.
- (1) \rightarrow (2) $[f \geq \alpha] = \bigcap_{n=1}^{\infty} [f > \alpha \frac{1}{n}], [f > \alpha \frac{1}{n}] \in \mathcal{M}$. よって $[f > \alpha] \in \mathcal{M}$.
 - $(2)\rightarrow (3)$ $[f < \alpha] = [f \ge \alpha]^c, [f \ge \alpha] \in \mathcal{M}$ よって、左辺 $\in \mathcal{M}$.
- $(3) \rightarrow (4)$ $[f \leq \alpha] = \bigcap_{n=1}^{\infty} [f < \alpha + \frac{1}{n}].$ $[f < \alpha + \frac{1}{n}] \in \mathcal{M}$. よって $[f \leq \alpha] \in \mathcal{M}$.

証明終

可測関数の意味

可測関数の例

 $A \in \mathcal{M}$ に対し

$$1_A(x) = 1$$
 if $x \in A, 1_A(x) = 0$ if $x \notin A$

とかく。実数 $a_1, a_2, ...$ と集合 $A_1, A_2, ... \in \mathcal{M}$ (ただし、 $A_i \cap A_j = \emptyset$ if $i \neq j$)に対し

$$f(x) = \sum_{i=1}^{n} a_i 1_{A_i}(x), \quad \cup_{i=1}^{n} A_i = E$$

と書かれる関数を、階段関数 (step function) または単関数 (simple function) という。

命題2

- $(f_n)_{n=1}^{\infty}$ を可測関数とするとき
- $(1) \sup_{n\geq 1} f_n(x), \inf_{n\geq 1} f_n(x)$ は可測関数である。
- (2) $\limsup_{n\to\infty} f_n(x)$, $\liminf_{n\to\infty} f_n(x)$ は可測関数である。
- (3) $f_n(x) \rightarrow f(x)$ (各点収束) ならば、f(x) は可測関数である。

証明

(1)

$$A_n \in \mathcal{M} \to \cup_n A_n \in \mathcal{M}$$

 $A \in \mathcal{M} \to A^c \in \mathcal{M}$

よって

$$A_n \in \mathcal{M} \to \cap_n A_n \in \mathcal{M}$$

したがって f_n が可測関数ならば、

$$\left[\inf_{n>1} f_n > \alpha\right] = \bigcap_n [f_n > \alpha] \in \mathcal{M}$$

$$\left[\sup_{n\geq 1} f_n > \alpha\right] = \cup_n [f_n > \alpha] \in \mathcal{M}$$

となる。

(2)

$$\limsup_{n} f_n = \inf_{n \ge 1} (\sup_{k \ge n} f_k)$$

$$\liminf_{n} f_n = \sup_{n \ge 1} (\inf_{k \ge n} f_k)$$

なので、(1)よりしたがう。

(3)

$$\lim_{n} f_n = \lim_{n} \sup_{n} f_n = \liminf_{n} f_n$$

なので、可測である。証明終

1.4. 積分論-1 23

命題3

f(x),g(x)を $E\subset \mathbf{R}^n$ 上の可測関数とするとき、f(x)+g(x),f(x)g(x),cf(x)は可測関数である。

証明

$$[f+g>\alpha]=[f>\alpha-g]=\cup_{r\in\mathbf{Q}}([f>r]\cap[r>\alpha-g])\in\mathcal{M}$$

等による。証明終

1.4.2 ルベーグ式積分

命題1

非負関数 $f(x): E \to [0, +\infty]$ が可測ならば、非負単関数列 (f_n) で、各 $x \in E$ について

 $f_n(x)$ は単調非減少、 $f_n(x) \to f(x)$ となるものが存在する。

証明

$$f_n(x) = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} 1_{E_k}(x) + n 1_{F_n}(x)$$

とおく。ただし、

$$E_k = f^{-1}(\left[\frac{k-1}{2^n}, \frac{k}{2^n}\right]) \in \mathcal{M}$$
$$F_n = f^{-1}([n, \infty]) \in \mathcal{M}$$

である。このとき、各 $x \in E$ について

$$f_n(x) \to f(x)$$

となる。証明終

定義(可測関数の積分)

(1) 単関数 $f(x) = \sum_{i=1}^n a_i 1_{A_i}(x), a_i \ge 0, A_i \cap A_j = \emptyset (i \ne j)$ に対し

$$\int f(x)m(dx) = \sum_{i=1}^{n} a_i m(A_i)$$

と定義する。

なお、f(x) に 2 つの表し方があっても、左辺は等しい。

(2) f を非負可測関数とする。上の命題より、 $\varphi_n \to f$ となる有界階段関数(単関数)列 (φ_n) をとり、

$$\int f(x)m(dx) = \lim_{n \to \infty} \int \varphi_n(x)m(dx)$$

と定義する。左辺は (φ_n) の取り方によらない。

(3) ƒが一般の可測関数の場合。

$$f_{+}(x) = \frac{1}{2}(|f(x)| + f(x)), f_{-}(x) = \frac{1}{2}(|f(x)| - f(x))$$

とおくと、 $f_{:}(x) \geq 0, f_{-}(x) \geq 0, f(x) = f_{+}(x) - f_{-}(x)$ となる。 (2) により $\int f_{+}(x)m(dx), \int f_{-}(x)m(dx)$ を定義し、その少なくとも一方が有限であるとき、

$$\int f(x)m(dx) = \int f_{+}(x)m(dx) - \int f_{-}(x)m(dx)$$

と定義する。

定義終

可測関数 f(x) は $\int |f(x)|m(dx)$ が有限のとき、可積分とよばれる。

命題2 (積分の性質(1))

f,q はともに非負可測関数とするとき

(1) a > 0, b > 0 に対し

$$\int (af(x) + bg(x))m(dx) = a \int f(x)m(dx) + b \int g(x)m(dx)$$

(2) f(x) < g(x) ならば

$$\int f(x)m(dx) \le \int g(x)m(dx)$$

証明

(1) Step 1 単関数

$$f^{n_1}(x) = \sum_{j=0}^{n_1} a_j^1 1_{A_{1,j}}(x), g^{n_2}(x) = \sum_{k=0}^{n_2} a_k^2 1_{A_{2,k}}(x)$$

1.4. 積分論-1

25

で、

$$\lim_{n_1 \to \infty} f^{n_1} = f, \lim_{n_2 \to \infty} g^{n_2} = g$$

となるものをとる。

$$\int (af^{n_1} + bg^{n_2})m(dx) = a \int f^{n_1}m(dx) + b \int g^{n_2}m(dx)$$

を示し、 $n_1 \to \infty, n_2 \to \infty$ とすればよい。

 $Step\ 2\ a > 0, b > 0$ だから、 $af^{n_1} + bg^{n_2}$ は非負関数で

$$(f^{n_1} + g^{n_2})(x) = \sum_{j=0}^{n_1} \sum_{k=0}^{n_2} (aa_j^1 + ba_k^2) 1_{A_{1,j} \cap A_{2,k}}(x)$$

となっている。

以下、簡単のためa=1,b=1とする。

$$\int (f^{n_1} + g^{n_2}) m(dx) = \sum_{j=0}^{n_1} \sum_{k=0}^{n_2} (a_j^1 + a_k^2) m(A_{1,j} \cap A_{2,k})$$

$$= \sum_{j=0}^{n_1} \sum_{k=0}^{n_2} a_j^1 m(A_{1,j} \cap A_{2,k}) + \sum_{j=0}^{n_1} \sum_{k=0}^{n_2} a_k^2 m(A_{1,j} \cap A_{2,k})$$

$$= \sum_{j=0}^{n_1} a_j^1 \sum_{k=0}^{n_2} m(A_{1,j} \cap A_{2,k}) + \sum_{k=0}^{n_2} a_k^2 \sum_{j=0}^{n_1} m(A_{1,j} \cap A_{2,k})$$

$$= \sum_{j=0}^{n_1} a_j^1 m(A_{1,j}) + \sum_{k=0}^{n_2} a_k^2 m(A_{2,k})$$

$$= \int f^{n_1} m(dx) + \int g^{n_2} m(dx).$$

(2) (1) と同様にして、単関数の場合に、 $f^{n_1}(x) \leq g^{n_2}(x)$ ならば

$$\int f^{n_1}(x)m(dx) \le \int g^{n_2}(x)m(dx)$$

を示す。

仮定より $A_{1,j} \cap A_{2,k} \neq \emptyset$ ならば、 $x \in A_{1,j} \cap A_{2,k}$ に対し

$$a_i^1 = f^{n_1}(x) \le g^{n_2}(x) = a_k^2$$

である。

$$\Lambda_j = \{k; A_{1,j} \cap A_{2,k} \neq \emptyset\}$$
 とおく。

$$\int f^{n_1}(x)m(dx) = \sum_{j=0}^{n_1} a_j^1 \sum_{k=0}^{n_2} m(A_{1,j} \cap A_{2,k})$$

$$= \sum_{j=0}^{n_1} a_j^1 \sum_{k \in \Lambda_j} m(A_{1,j} \cap A_{2,k})$$

$$\leq \sum_{j=0}^{n_1} \sum_{k \in \Lambda_j} a_k^2 m(A_{1,j} \cap A_{2,k})$$

$$= \sum_{j=0}^{n_1} \sum_{k=0}^{n_2} a_k^2 m(A_{1,j} \cap A_{2,k})$$

$$= \sum_{j=0}^{n_2} a_k^2 m(A_{2,k}) = \int g^{n_2}(x) m(dx)$$

証明終

命題3 (積分の性質(2))

(1) $f^2(x), g^2(x)$ が可積分ならば、f(x)g(x) も可積分で

$$|\int f(x)g(x)m(dx)| \le (\int f^2(x)m(dx))^{1/2} \cdot (\int g^2(x)m(dx))^{1/2}$$
(2)

$$\left(\int |f(x)+g(x)|^2 m(dx)\right)^{1/2} \le \left(\int f^2(x) m(dx)\right)^{1/2} + \left(\int g^2(x) m(dx)\right)^{1/2}$$

証明は1.5.4節を参照。

このような可測関数の集合を L^2 とかく。文字'L'はルベーグ(H. Lebesgue)の積分論に対する先験的な貢献からきている。

1.4.3 収束定理

定理 $\mathbf{1}$ (単調収束定理) $(f_n(x))$ は可測関数列で、

$$0 \le f_n(x) \le f_{n+1}(x), n = 1, 2, ..., x \in \mathbf{R}^n$$

1.4. 積分論-1

とする。このとき

$$\lim_{n \to \infty} \int f_n(x) m(dx) = \int \lim_{n \to \infty} f_n(x) m(dx)$$

27

ただし、積分値は $+\infty$ の場合も含む。

これより、 $\lim_{n\to\infty} f_n(x) = f(x)$ とおくと

$$\lim_{n \to \infty} \int f_n(x) m(dx) = \int f(x) m(dx)$$

である。なお極限関数 $f(x) = \lim_{n \to \infty} f_n(x)$ は可測関数でなくてもよい。

証明

証明のための補題

 $E_i \in \mathcal{B}_n$ で、 $E_1 \subset E_2 \subset ..., \mathbf{R}^n = \bigcup_{i=1}^{\infty} E_i$ とする。s(x) は非負可測単関数とすると

$$\lim_{n \to \infty} \int_{E_i} s(x) m(dx) = \int_{\mathbf{R}^n} s(x) m(dx)$$

証明

$$s(x) = \sum_{i=1}^{n} a_i 1_{A_i}(x)$$

とすると

$$s(x) \cdot 1_{E_i}(x) = \sum_{j=0}^{n} a_j \cdot 1_{A_j \cap E_i}(x)$$

$$\int_{E_i} s(x)m(dx) = \sum_{i=0}^n a_j \cdot m(A_i \cap E_i)$$

 $A_j\cap E_i$ は集合の単調増大列であるから、測度の性質 (2) より、 $i\to\infty$ のとき

$$\rightarrow \sum_{j=0}^{n} a_j \cdot m(A_j \cap \mathbf{R}^n)$$

$$= \sum_{j=0}^{n} a_j \cdot m(A_j) = \int_{\mathbf{R}^n} s(x) m(dx).$$

(証明終)

本来の証明

 $f_n(x) \le f(x)$ だから、積分の性質 (1) より

$$\int f_n(x)m(dx) \le \int f(x)m(dx)$$

よって

$$\lim_{n \to \infty} \int f_n(x) m(dx) \le \int f(x) m(dx) \tag{4.1}$$

一方、s(x) を $0 \le s(x) \le f(x)$ となる非負可測単関数とする。0 < a < 1 に対し $E_n = \{x; a \cdot s(x) \le f_n(x)\}$ とおく。 $E_n = \{x; f_n(x) - as(x) \ge 0\}$ は可測集合であり、

$$E_1 \subset E_2 \subset E_3 \subset ..., \cup_{n=1}^{\infty} E_n = \mathbf{R}^n$$

となっている。上の補題より

$$\lim_{n \to \infty} \int_{E_n} s(x)m(dx) = \int s(x)m(dx) \tag{4.2}$$

ここで

$$\int f_n(x)m(dx) \ge \int_{E_n} f_n(x)m(dx) \ge a \int_{E_n} s(x)m(dx)$$

だから、(4.2) より

$$\lim_{n \to \infty} \int f_n(x) m(dx) \ge a \int s(x) m(dx)$$

 $a \to 1$ とすると、(右辺) $\geq \int s(x)m(dx)$ ここで s(x) は $0 \leq s(x) \leq f(x)$ をみたす任意の単関数だから

$$\lim_{n \to \infty} \int f_n(x) m(dx) \ge \int f(x) m(dx) \tag{4.3}$$

(4.1), (4.3) により結論を得る。証明終

この定理より、例えば、 $f_n(x) > 0$ に対し

$$\int \sum_{n=1}^{\infty} f_n(x) dx = \sum_{n=1}^{\infty} \int f_n(x) dx$$

(項別積分公式) が示せる。

1.4. 積分論-1 29

じっさい、 $g_n(x) = \sum_{i=1}^n g_i(x), g(x) = \sum_{n=1}^\infty f_n(x)$ として、定理 1 を適用すればよい。

数列に (a_n) ついて $\liminf_{n\to\infty} a_n$, $\limsup_{n\to\infty} a_n$ を

$$\liminf_{n \to \infty} a_n = \lim_{k \to \infty} \inf_{n \ge k} a_n,$$

$$\limsup_{n \to \infty} a_n = \lim_{k \to \infty} \sup_{n \ge k} a_n$$

とおく。関数列 (f_n) に対して

$$(\liminf_{n\to\infty} f_n)(x) = \liminf_{n\to\infty} f_n(x), (\limsup_{n\to\infty} f_n)(x) = \limsup_{n\to\infty} f_n(x)$$

として、関数 $\liminf_{n\to\infty} f_n$, $\limsup_{n\to\infty} f_n$ を定義する。

定理 2 (Fatou の補題) (f_n) を非負な可測関数列とするとき、

$$\int \liminf_{n \to \infty} f_n(x) m(dx) \le \liminf_{n \to \infty} \int f_n(x) m(dx),$$

$$\limsup_{n \to \infty} \int f_n(x) m(dx) \le \int \limsup_{n \to \infty} f_n(x) m(dx)$$

がなりたつ。

証明

 $x\mapsto \liminf_{n\to\infty}f_n(x)$ は非負可測関数である。 $k\mapsto \inf_{n\geq k}f_n(x)$ は非負可測関数の単調増加列であるから、単調収束定理より

$$\lim_{k \to \infty} \int \inf_{n \ge k} f_n(x) m(dx) = \int \lim_{k \to \infty} \inf_{n \ge k} f_n(x) m(dx)$$

$$= \int \lim_{n \to \infty} \inf_{n \to \infty} f_n(x) m(dx)$$
(4.4)

一方、任意の $j \ge k$ に対し $\inf_{n \ge k} f_n(x) \le f_j(x)$ であるから

$$\int \inf_{n>k} f_n(x)m(dx) \le \inf_{j>k} \int f_j(x)m(dx)$$

ここで両辺において $k \to \infty$ とすると、(4.4) より

$$\liminf_{n \to \infty} \int f_n(x) m(dx) \ge \int \liminf_{n \to \infty} f_n(x) m(dx)$$

後半は $-\sup_n f_n(x) = \inf(-f_n(x))$ とおいて考えれば同じようにしてできる。証明終わり

定理3 (ルベーグの収束定理) 可測関数列 (f_n) と、1 つの可測関数 f があって次を満たすとする:

- (1) 各x において $\lim_{n\to\infty} f_n(x) = f(x)$
- (2) ある非負可積分関数 q が存在して

任意の
$$n \ge 1$$
,任意の x について $|f_n(x)| \le g(x)$

このとき f も可積分で

$$\int f(x)m(dx) = \lim_{n \to \infty} \int f_n(x)m(dx)$$

である。

系(有界収束定理)

 $m(\Omega) < +\infty$ とする。ある M > 0 があって、任意の n に対し

$$|f_n(x)| < M$$
 on Ω

ならば、

$$\int \lim_{n \to \infty} f_n(x) m(dx) = \lim_{n \to \infty} \int f_n(x) m(dx)$$

である。

証明はルベーグの収束定理で $q(x) \equiv M$ ととればよい。

ルベーグの収束定理の証明

仮定より g(x) - f(x), g(x) + f(x) は各々非負可測関数である。Fatou の補題より

$$\int (g(x) + f(x))m(dx) = \int \lim_{n \to \infty} (g(x) + f_n(x))m(dx)$$

$$\leq \liminf_{n \to \infty} (\int g(x)m(dx) + \int f_n(x)m(dx))$$

$$= \int g(x)m(dx) + \liminf_{n \to \infty} \int f_n(x)m(dx)$$
これより
$$\int f(x)m(dx) \leq \liminf_{n \to \infty} \int f_n(x)m(dx) \tag{3.5}$$

1.4. 積分論-1 31

一方、 $\int (g(x)-f(x))m(dx)=\int \lim_{n\to\infty}(g(x)-f_n(x))m(dx)\geq 0$ 。 Fatou の補題より

$$(R.H.S.) \le \liminf_{n \to \infty} \left(\int g(x) m(dx) - \int f_n(x) m(dx) \right)$$
$$= \int g(x) m(dx) - \limsup_{n \to \infty} \int f_n(x) m(dx)$$

これより

$$\limsup_{n \to \infty} \int f_n(x) m(dx) \le \int f(x) m(dx) \tag{3.6}$$

 $(3.5), (3.6) \downarrow 0$

$$\int f(x)m(dx) = \liminf_{n \to \infty} \int f_n(x)m(dx) = \limsup_{n \to \infty} \int f_n(x)m(dx)$$

となり、

$$\lim_{n \to \infty} \int f_n(x) m(dx) = \int f(x) m(dx)$$

である。証明終わり

ルベーグの収束定理の応用

定理4

(1) 非負可測関数列 $(f_n)_{n\geq 1}$ に対して

$$\int \left(\sum_{n=1}^{\infty} f_n(x)\right) m(dx) = \sum_{n=1}^{\infty} \int f_n(x) m(dx)$$

 $(2) (f_n)_{n\geq 1}$ は可積分関数列で

$$\sum_{n=1}^{\infty} \int |f_n(x)| m(dx) < +\infty$$

とする。このとき

$$\int \left(\sum_{n=1}^{\infty} f_n(x)\right) m(dx) = \sum_{n=1}^{\infty} \int f_n(x) m(dx)$$

証明

(1) は単調収束定理(定理1)による。

$$g_n(x) = \sum_{i=1}^n f_i(x), g(x) = \sum_{i=1}^\infty f_i(x)$$

とおく。ここで

$$\sum_{i=1}^{\infty} f_i(x) = \lim_{n \to \infty} \sum_{i=1}^{n} f_i(x)$$

これより

$$\int \sum_{i=1}^{\infty} f_i(x) m(dx) = \int \lim_{n \to \infty} \sum_{i=1}^{n} f_i(x) m(dx)$$

$$= \lim_{n \to \infty} \int \sum_{i=1}^{n} f_i(x) m(dx) \, (ルベーグの収束定理)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \int f_i(x) m(dx) = \sum_{i=1}^{\infty} \int f_i(x) m(dx)$$

(2) はルベーグの収束定理において、 $g(x) = \sum_{n=1}^{\infty} |f_n(x)|$ ととればよい。

なお、 $\Omega = \mathbf{R}^n, m(dx) = \nu$ ベーグ測度の場合、m(dx) を単に dx とかくこともある。

収束定理に関連する例題

例題 1 $f_n(x) = n^2 x e^{-nx}, 1 \le x \le 100$ とし、関数列 (f_n) を考える。各 x に対し

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{n^2 x}{e^{nx}} = 0$$

である。さらに

$$f_n(x) \le 4e^{-2} \quad (n \ge 1)$$

である (練習問題)。よって、有界収束定理より

$$\lim_{n \to \infty} \int_{1}^{100} f_n(x) dx = \int_{1}^{100} \lim_{n \to \infty} f_n(x) dx$$
$$= \int_{1}^{100} 0 dx = 0.$$

実際、部分積分により

$$\int_{1}^{100} n^{2}x e^{-nx} dx = \left[n^{2}x(-\frac{1}{n}e^{-nx})\right]_{1}^{100} - \int_{1}^{100} n^{2}(-\frac{1}{n})e^{-nx} dx$$

1.4. 積分論-1

$$= [-nxe^{-nx}]_1^{100} + \int_1^{100} ne^{-nx} dx$$

$$= ne^{-n} - 100ne^{-100n} + n[-\frac{1}{n}e^{-nx}]_1^{100}$$

$$= ne^{-n} - 100ne^{-100n} + (-e^{-100n} + e^{-n})$$

33

ここで $n \to \infty$ とすると、各項 $\to 0$ 。よって、右辺 $\to 0$ 。

なお

$$E = [0, 1], f_n(x) = x^n, f(x) = 1(x = 1), = 0(0 \le x < 1)$$

でも同じ議論が言える。

例題 2

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} = \log 2$$

実際、左辺を奇数・偶数とかくと、

左辺 =
$$\sum_{m=1}^{\infty} (\frac{1}{2m-1} - \frac{1}{2m})$$

 $(ここで \frac{1}{2m-1} - \frac{1}{2m} \ge 0)$ さらに

$$\frac{1}{2m-1} = \int_0^\infty e^{-(2m-1)x} dx, \frac{1}{2m} = \int_0^\infty e^{-2mx} dx$$

であり、定理4(ルベーグの収束定理の応用)より

左辺 =
$$\sum_{m=1}^{\infty} \int_0^{\infty} (e^{-(2m-1)x} - e^{-2mx}) dx$$

$$= \int_0^\infty \sum_{m=1}^\infty (e^{-(2m-1)x} - e^{-2mx}) dx$$

ここで積分の中身は初項 $e^{-x}-e^{-2x}=e^{-x}(1-e^{-x})$, 公比 e^{-2x} の等比数列なので、和は

$$e^{-x}(\frac{1-e^{-x}}{1-e^{-2x}}) = e^{-x}(\frac{1-e^{-x}}{(1-e^{-x})(1+e^{-x})}) = e^{-x}\frac{1}{1+e^{-x}}$$

となる。よって

(右辺) =
$$\int_0^\infty \frac{e^{-x}}{1 + e^{-x}} dx$$

= $[-\log(1 + e^{-x})]_0^\infty = \log 2$

例題 3 *(*ルベーグ積分では計算できない例)

$$f(x) = (-1)^{n+1}n, \ \frac{1}{n+1} < x \leq \frac{1}{n}$$
 とおく。 $|f(x)| = n, \ \frac{1}{n+1} < x \leq \frac{1}{n}$

$$\int_0^1 |f(x)| dx = \sum_{n=1}^\infty \int_{\frac{1}{n+1}}^{\frac{1}{n}} n dx$$

$$= \sum_{n=1}^\infty n \left(\frac{1}{n} - \frac{1}{n+1}\right) = \sum_{n=1}^\infty \left(1 - \frac{n}{n+1}\right)$$

$$= 1 - \frac{1}{2} + 1 - \frac{2}{3} + 1 - \frac{3}{4} + 1 - \frac{4}{5} + \dots$$

$$= \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \infty$$

しかし

$$\int_0^1 f(x)dx = \sum_{n=1}^\infty (-1)^{n+1} n(\frac{1}{n} - \frac{1}{n+1})$$
$$= \sum_{n=1}^\infty (-1)^{n+1} (1 - \frac{n}{n+1})$$
$$= \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \dots$$

例題2より

$$\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \dots$$

つまり

$$1 - \log 2 = \frac{1}{2} - \frac{1}{3} + \dots$$

よって

$$\int_0^1 f(x)dx = 1 - \log 2$$

となる。

1.4. 積分論-1 35

1.4.4 フビニの定理

Overview

- (1) \mathcal{M}_0 の存在
- $(2)M_Z$ の存在
- (3) (Z,\mathcal{M}) 上の測度 π の存在
- $(4)Z = X \times Y$ 上の可測関数
- (5) 射影定理(可測性、フビニ)

 $(X, \mathcal{M}_X, m_X), (Y, \mathcal{M}_Y, m_Y)$ を2つの測度空間とする。また、 $Z = X \times Y$ とする。

 $A \in \mathcal{M}_X, B \in \mathcal{M}_Y$ に対し、 $A \times B$ は可測な積集合である。

$$\mathcal{M}_Z^0 = \{ \bigcup_{i=1}^n A_i \times B_i \subset Z; A_i \in \mathcal{M}_X, B_i \in \mathcal{M}_Y, i = 1, ..., n, n \in \mathbf{N} \}$$

とする。 M_Z^0 は有限加法族になる。

これを元に可測集合族 (σ -加法族) をつくる。

 $\mathcal{M}_Z = \sigma(M_X \times M_Y)$ を \mathcal{M}_Z^0 から生成された σ -加法族とする。 つまり、

- (1) M_Z の元は M_Z^0 の元を含む
- (2) $A \in \mathcal{M}_Z \Rightarrow A^c \in \mathcal{M}_Z$
- $(3) A_1, A_2, \dots \in \mathcal{M}_Z \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{M}_Z$
- (4) M_Z は (1)-(3) をみたす σ -加法族のうち最小である。

このような集合族 \mathcal{M}_Z は、構成できる。(下記命題 1 証明 [Step 1, Step 2] を参照)

更に、測度の拡張定理 3 より、(Z, M_Z)上に次のような測度が存在する。

定理 1 (Z, M_Z) 上に測度 π が一意的に存在し、次をみたす:

 $A \in \mathcal{M}_X, B \in \mathcal{M}_Y$ に対し $\pi(A \times B) = m_X(A)m_Y(B)$.

(証明は命題1のあと参照)

 \mathbb{C} この π を m_X と m_Y の直積測度といい、 $m_X \times m_Y$ とかく。また、 m_Z ともかく。

 $E \subset Z$ に対し、その x-断面 E^x と y-断面 E_y を次のように定義する:

$$E^x = \{ y \in Y; (x, y) \in E \}, E_y = \{ x \in X; (x, y) \in E \}$$

³E. Hopf の拡張定理。Kolmogorov の拡張定理ともいう。測度 π の一意性はこの条件による。参考文献 [2] 参照。なお、「 $Z_1 \subset Z_2 \subset ...$ で $m_Z(Z_k) < \infty$ for all $k, Z = \cup_{k \leq 1} Z_k$ であること」が十分である。

これらは可測集合である。また、E上の関数 f(x,y) に対し、

$$f^{x}(y) = f(x, y), y \in E^{x}, f_{y}(x) = f(x, y), x \in E_{y}$$

とおく。

命題 1 (1) もし $E \in \mathcal{M}_Z$ ならば $E^x \in \mathcal{M}_Y, E_y \in \mathcal{M}_X$

(2) $E \in \mathcal{M}_Z$ とする。また、 $\varphi(x) = m_Y(E^x), \psi(y) = m_X(E_y)$ とおく。 $\varphi(x), \psi(y)$ は各々 \mathcal{M}_X -可測、 \mathcal{M}_Y -可測であり、

$$\int_{X} \varphi(x) m_X(dx) = m_Z(E) = \int_{Y} \psi(y) m_Y(dy)$$

である。

(3) もしf が M_Z -可測ならば、 f^x は M_Y -可測、 f_y は M_X -可測である。

命題 1 の証明 ([Step1, Step2]((1), (2)) と [Step3]((3)) をわける。) [Step 1] \mathcal{M}_Z^0 の元は (1), (2) を満たす。つまり $\mathcal{M}_Z^0 \subset \mathcal{K}$ (証明) $E = A \times B$ のとき、

$$E^x = B \text{ if } x \in A, \quad E^x = \emptyset \text{ if } \notin A$$

となるので、 $E^x \in \mathcal{M}_Y$ 。同様に $E^y \in \mathcal{M}_X$ 。 また

$$m_Y(E^x) = m_Y(B)$$
 if $x \in A$, $m_Y(E^x) = 0$ if $\notin A$

となるので、 $x \mapsto m_Y(E^x)$ は x に関して可測である。 さらに

$$\int m_Y(E^x)m_X(dx) = m_X(A)m_Y(B)$$
$$= (m_X \times m_Y)(A \times B) = m_Z(E)$$

となる。

$$\int m_X(E^y)m_Y(dy) = m_Z(E)$$

も同様である。

[Step 2] (1), (2) をみたす $E \in \mathcal{M}_Z$ の全体を \mathcal{K} と書く。以下 $\mathcal{K} = \mathcal{M}_Z$ を示す。そうすれば \mathcal{M}_Z の元に対し (1), (2) がなりたつことになる。

1.4. 積分論-1 37

- (i) $K_n \in \mathcal{K}, K_1 \subset K_2 \subset K_3 \subset \cdots \to A \Leftrightarrow \exists \exists A \in \mathcal{K}$
- (ii) $K_n \in \mathcal{K}, K_1 \supset K_2 \supset \cdots \supset K_n \to A \text{ α if } A \in \mathcal{K}$

補題の (i), (ii) を満たす集合族を**単調族**という。 σ -加法族は単調族である。以下では、 $K_1 \subset K_2 \subset K_3 \subset \cdots \to A$ を $K_n \uparrow A$ 、 $K_1 \supset K_2 \supset \cdots \supset K_n \downarrow A$ とかく。

(補題の証明):ノートは作ったけどここでは省略してある。

 M_Z は M_Z^0 を含む最小の σ -加法族である。一方、一般に単調族をなす有限加法族は σ -加法族であることが知られている 4 。よって、 \mathcal{K} が有限加法族であれば、 $\mathcal{K}=M_Z$ となって主張が示せる。

(化が有限加法族であることの証明)

 $\mathcal{K}_1 = \{K \in \mathcal{K}; K^c \in \mathcal{K}\}\$ とする。 $K_n \in \mathcal{K}_1, K_n \uparrow A$ のとき (i) より $A \in \mathcal{K}_0$ 。また $K_n^c \downarrow A^c$ だから (ii) より $A^c \in \mathcal{K}_0$ 。よって $A \in \mathcal{K}_1$ である。同様に $K_n \in \mathcal{K}_1, K_n \downarrow A$ とすれば $A^c \in \mathcal{K}$ である。

これより \mathcal{K}_1 は単調族である。[Step 1] より \mathcal{K} は \mathcal{M}_Z^0 を含む最小の単調族であるから、 $\mathcal{K}=\mathcal{K}_1$ である。つまり、 $K\in\mathcal{K}_1$ ならば $K^c\in\mathcal{K}_1$ 。

次に $F \in \mathcal{M}_z^0$ とし、

$$\mathcal{K}_2 = \{ K \in \mathcal{K}; F \cup K \in \mathcal{K}, F \cap K \in \mathcal{K} \}$$

とおく。 \mathcal{K} は単調族であることより、 $K_n \in \mathcal{K}_2$, $K_n \uparrow A$ のとき $A \in \mathcal{K}_2$ となり、 $K_n \in \mathcal{K}_2$, $K_n \downarrow A$ のとき $A \in \mathcal{K}_2$ となり、上と同じ理由により $\mathcal{K}_2 = \mathcal{K}$ である 5 。

 $K_0 \in \mathcal{K} \succeq \mathcal{U}$

$$\mathcal{K}_3 = \{K \in \mathcal{K}; K_0 \cup K \in \mathcal{K}, K_0 \cap K \in \mathcal{K}\}$$

とおく。 $\mathcal{K}_2=\mathcal{K}$ であるから、 $A\cup B=B\cup A$ であることを考えると $\mathcal{M}_Z^0\subset\mathcal{K}_3$ である。 \mathcal{K}_3 が単調族であることは上と同様に確かめることができる。よって $\mathcal{K}_3=\mathcal{K}$ である。したがって

$$K_1, K_2 \in \mathcal{K} \implies K_1 \cup K_2 \in \mathcal{K}, K_1 \cap K_2 \in \mathcal{K}$$

⁴命題「M を \mathbf{R}^n の部分集合族とする。M が有限加法族かつ単調族なら σ -加法族」よりわかる。これを示せ。

 $^{{}^5\}mathcal{K}_2$ は単調族、 $\mathcal{K}_2 \subset \mathcal{K}$, \mathcal{K} は \mathcal{M}_Z^0 を含む最小の単調族 $\Rightarrow \mathcal{K}_2 = \mathcal{K}$ 。 ${}^6B = K \in \mathcal{M}_Z^0$

これよりKは有限加法族である。(証明終わり(2))

[Step 3](証明(3)) 集合Aの定義関数を 1_A とかく。(1) より、 $1_{E^x}(y), 1_{E_y}(x)$ は可測関数である。

f(x,y) を \mathcal{M}_{Z} -可測な非負関数とする。可測関数の性質 (Section 1.4.1) より、単関数 f_n で

$$f_n > 0$$
, $f_n \uparrow f$

となるものが存在する。 $f_n^x, f_{n,y}$ は、各々Y, X上の単関数である。

単関数はいくつかの定義関数の 1 次結合だから、各々の定義関数が可測関数であることより、可測関数である。よって、Section 1.4.1 命題 2 より、 f^x , f_y は可測関数である。

f(x,y)が非負とは限らない $\mathcal{M}_{Z^{-}}$ 可測関数の場合には、 $f=f^{+}-f^{-}, f^{+}\geq 0$, $f^{-}\geq 0$ と分解すれば、同様に議論できる。

命題1の証明終わり

定理1の証明

命題 1(2) より π の $M_X\otimes M_Y$ の上の 1 つ 1 つの積分値の存在は示せた。 最後に残った点として、直積測度 π の M_Z 上の可算加法性を示す。 $K_1,K_2,...\in\mathcal{M}_Z,K_i\cap K_j=\emptyset$ $(i\neq j),K=\cup_{n=1}^\infty K_n$ とする。 $1_K(x,y)=\sum_{n=1}^\infty 1_{K_n}(x,y)$ である。よって

$$\pi(K) = \int (\int 1_K(x, y) m_Y(dy)) m_X(dx)$$

$$= \int (\int \sum_{n=1}^{\infty} 1_{K_n}(x, y) m_Y(dy)) m_X(dx)$$

$$= \int (\sum_{n=1}^{\infty} \int 1_{K_n}(x, y) m_Y(dy)) m_X(dx)$$

$$= \sum_{n=1}^{\infty} \int (\int 1_{K_n}(x, y) m_Y(dy)) m_X(dx) = \sum_{n=1}^{\infty} \pi(K_n)$$

証明終わり

測度 $\pi = m_X \times m_Y$ に関する積分

$$\int_{X\times Y} f(x,y)\pi(dxdy)$$

1.4. 積分論-1 39

を考える。

定理2 (フビニの定理その1) f(x,y) は非負可測とする。

(1) 関数 $y \mapsto \int_X f(x,y) m_X(dx)$ は \mathcal{M}_Y -可測関数であり

$$\int_{X\times Y} f(x,y)\pi(dxdy) = \int_{Y} (\int_{X} f(x,y)m_X(dx))m_Y(dy)$$

(2) (1) で X と Y の役割を入れかえても同じである。

証明 命題 1 (3) の証明と同様にして、f(x,y) が定義関数の場合に議論すればよい。これは命題 1 (2) において証明されている。証明終わり

定理3 (フビニの定理その2) f(x,y) は可積分とする。

(1) 関数 $g(y) = \int_X f(x,y) m_X(dx)$ は \mathcal{M}_Y -可測関数であり

$$\int_{X\times Y} f(x,y)\pi(dxdy) = \int_Y (\int_X f(x,y)m_X(dx))m_Y(dy)$$

(2) (1) で X と Y の役割を入れかえても同じである。

証明 $f(x,y)=f^+(x,y)-f^-(x,y), f^+(x,y)\geq 0, f^-(x,y)\geq 0$ とおいて、フビニの定理その 1 を使う。 $f^+\leq |f|, f^-\leq |f|$ なので、可積分性は仮定から従う。証明終わり

注意 f が可積分でない時には、上の主張は一般になりたたない。

例題 4 $f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$ に対し

$$\int_{0}^{1} dx \int_{0}^{1} f(x, y) dy \neq \int_{0}^{1} dy \int_{0}^{1} f(x, y) dx$$

である。

じっさい、もしfが可積分ならフビニの定理より両者は一致するはずであるが、

$$\int_{[0.1]\times[0.1]} |f(x,y)| dxdy = +\infty$$

なので、f(x,y) は $[0,1] \times [0,1]$ で可積分でない。

証明

$$\int \int_{[0,1]\times[0,1]} |f(x,y)| dx dy = -2 \int \int_{\triangle(0,0)(0,1)(1,1)} \frac{x^2 - y^2}{(x^2 + y^2)^2} dx dy$$

$$= -2 \int_0^1 dy \int_0^y \frac{x^2 - y^2}{(x^2 + y^2)^2} dx = 2 \int_0^1 (\left[\frac{x}{y^2 + x^2}\right]_0^y) dy$$

$$= 2 \int_0^1 dy (\frac{1}{2} \frac{y}{y^2}) = \int_0^1 dy \frac{1}{y} = +\infty.$$

例題 5 $f(x,y) = x^y, 0 < a < b$ に対し

$$\int_0^1 (\int_a^b f(x,y)dy)dx = \int_0^1 \frac{x^b - x^a}{\log x} dx = \log \frac{1+b}{1+a}$$

である。じっさい、

$$\int_{0}^{1} \int_{a}^{b} x^{y} dx dy \le \int_{0}^{1} \int_{a}^{b} x^{a} dx dy$$
$$= (b - a) \frac{1}{1+a} [x^{1+a}]_{0}^{1}$$
$$= \frac{b-a}{1+a} < +\infty$$

だから、f(x,y) は $[0,1] \times [a,b]$ で可積分である。 そこで、

$$\int_0^1 dx \int_a^b x^y dy = \int_0^1 dx [x^y \frac{1}{\log x}]_a^b$$
$$= \int_0^1 dx \frac{1}{\log x} (x^b - x^a)$$

(計算不能) であるが、

$$\int_{a}^{b} dy \int_{0}^{1} x^{y} dx = \int_{a}^{b} dy \frac{1}{1+y} [x^{1+y}]_{0}^{1}$$
$$= \int_{a}^{b} \frac{1}{1+y} dy = \log \frac{1+b}{1+a}$$

であるから、フビニの定理から結論を得る。

1.4. 積分論-1 41

例題 6 (分布等式)

 $f: E \to \mathbf{R}$ とする。1 に対して

$$\int_{E} |f(x)|^{p} m(dx) = p \int_{0}^{\infty} t^{p-1} m(|f| > t) dt$$

ただし、 $m(|f|>t)=m(\{x;|f(x)|>t\})$

証明 $F(y,s) = 1_{\{(y,s); y \in E, s \in [0,\infty), |f(y)| > s\}}(y,s)$ とおく。

$$\begin{split} \int_0^\infty t^{p-1} m(|f| > t) dt &= \int_0^\infty t^{p-1} (\int_E F(x, t) m(dx)) dt \\ &= \int_E (\int_0^\infty t^{p-1} \quad F(x, t)) dt) m(dx) = \int_E (\int_0^{|f|} t^{p-1} dt) m(dx) \\ &= \int_E \frac{1}{p} [t^p]_0^{|f|} m(dx) = \frac{1}{p} \int_E |f(x)|^p m(dx) \end{split}$$

上で2番目の等式から3番目の等式に行くときにフビニの定理を使った。 証明終わり

$$p = 1, f(.) = X(.), m = P$$
 ととれば

$$E[|X|] = \int_0^\infty dP(|X| > t)$$

として平均値(期待値)が計算できる。とくにXが非負ならば

$$E[X] = \int_0^\infty dP(X > t)$$

である。ここで $P(X>t)=1-P(X\leq t)$ であり、 $F(t)=P(X\leq t)$ は X の分布関数である。

例題 7

$$(1) \int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$

$$(2) \int_0^\infty \frac{1}{x} \sin \frac{1}{x} dx = \frac{\pi}{2}$$

M 1 (1)
$$\int_0^r \frac{|\sin x|}{x} dx = \int_0^r (\int_0^\infty e^{-xy} |\sin x| dy) dx$$

(何者、 $\int_0^\infty e^{-xy}dy=\frac{1}{x}$.) したがって、 $(x,y)\mapsto e^{-xy}\sin x$ は $(0,r)\times(0,\infty)$ で積分可能である。これよりフビニの定理が適用できて

$$\int_0^r \frac{\sin x}{x} dx = \int_0^r (\int_0^\infty e^{-xy} \sin x dy) dx$$
$$= \int_0^\infty (\int_0^r e^{-xy} \sin x dx) dy$$

ここで

$$\int_0^r e^{-xy} \sin x dx = \left[-e^{-xy} \frac{\cos x + y \sin x}{y^2 + 1} \right]_0^r = \frac{1}{y^2 + 1} - e^{-ry} \frac{\cos r + y \sin r}{y^2 + 1}$$

(じっさい

$$((e^{-xy}\frac{\cos x + y\sin x}{y^2 + 1}))' = -ye^{-xy}\frac{\cos x + y\sin x}{y^2 + 1} + e^{-xy}\frac{-\sin x + y\cos x}{y^2 + 1}$$
$$= e^{-xy}\frac{-(y^2 + 1)\sin x}{y^2 + 1} = -e^{-xy}\sin x)$$

 $2nkbrane x > \infty$

$$\int_0^\infty e^{-xy}\sin x dx = \frac{1}{y^2 + 1}$$

ここで

$$\int_0^\infty \frac{1}{y^2 + 1} dy = \arctan \infty = \frac{\pi}{2}$$

(2) y = 1/x とおくと $dy = -\frac{1}{x^2}dx = -y^2dx$

$$LHS = \int_0^\infty y^{-2}y\sin y dy = \int_0^\infty \frac{\sin y}{y} dy$$

よって(1)よりしたがう。

積分記号下の微分

 $f(t,x):(a,b)\times\mathbf{R}\to\mathbf{R}$ とし、次を仮定する。

- (1) $t \in (a,b)$ を固定すれば、 $x \mapsto f(t,x)$ はルベーグ可測
- (2) $x \in \mathbf{R}$ を固定すれば、 $t \mapsto f(t,x)$ は微分可能

1.4. 積分論-1

(3) あるルベーグ可積分関数 $\varphi(x)$ があって

$$\left|\frac{\partial}{\partial t}f(t,x)\right| \le \varphi(x) \quad \text{for } (t,x) \in (a,b) \times \mathbf{R}$$

43

このとき、 $\int f(t,x)dx$ は t に関して微分可能であり、

$$\frac{\partial}{\partial t} \int f(t,x) dx = \int \frac{\partial}{\partial t} f(t,x) dx$$

である。

証明は

$$\frac{\partial f}{\partial t}(t,x) = \lim_{h \to 0} \frac{f(t+h,x) - f(t,x)}{h}$$

であることによる。つまり、条件(3)からルベーグの収束定理が使え、

$$\begin{split} \int \frac{\partial}{\partial t} f(t,x) dx &= \int \lim_{h \to 0} \frac{f(t+h,x) - f(t,x)}{h} = \lim_{h \to 0} \int \frac{f(t+h,x) - f(t,x)}{h} dx \\ &= \lim_{h \to 0} \frac{1}{h} \int (f(t+h,x) - f(t,x)) dx = \lim_{h \to 0} \frac{1}{h} (\int f(t+h,x) dx - \int f(t,x) dx) \\ &= \frac{\partial}{\partial t} \int f(t,x) dx \end{split}$$

証明終わり

例題 8 *(*ガウス積分)

$$\int_0^\infty x^2 e^{-ax^2} dx = \frac{1}{4} \sqrt{\pi} a^{-3/2} \ (a > 0)$$

じっさい、

 $(step\ 1)\,x=\cos\theta,y=\sin\theta$ という極分解 (極座標変換) から、 $\int_0^\infty e^{-t^2}dt=\frac{\sqrt{\pi}}{2}$ である。 $t=\sqrt{\alpha}x$ とおくと、 $dt=\sqrt{\alpha}dx,x^2=t^2/\alpha$ より、

(1)
$$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

である。

$$f(lpha,x)=e^{-lpha x^2}$$
 とおく。 $rac{\partial f}{\partial lpha}=-x^2e^{-lpha x^2}$ であり、 $|rac{\partial f}{\partial lpha}(lpha,x)|=|x^2e^{-lpha x^2}|=x^2e^{-lpha x^2}$

となっている。

(step 2)

a>0 は与えられた定数とする。 $a\geq \alpha$ とし、 $a'<\alpha$ なる a'>0 を 1 つ 固定する。このとき、

$$x^2 e^{-\alpha x^2} \le x^2 e^{-a'x^2} \equiv \varphi(x)$$

とおく。ここで $\varphi(x)$ は可積分である。 じっさい、(1) より、

$$\int_0^\infty \varphi(x)dx = \int_0^\infty x^2 e^{-a'x^2} dx = \int_0^\infty x \cdot x e^{-a'x^2} dx$$
$$= \left[-\frac{1}{2a'} x e^{-a'x^2} \right]_0^\infty + \frac{1}{2a'} \int_0^\infty e^{-a'x^2} dx$$
$$= 0 + \frac{1}{2a'} \cdot \frac{1}{2} \sqrt{\frac{\pi}{a'}} = \frac{1}{4a'} \sqrt{\frac{\pi}{a'}} < +\infty$$

これより、 $\alpha=a$ ととると、(1) およびルベーグの収束定理 $(\lim \leftarrow \rightarrow \frac{d}{da})$ より、

$$\int_0^\infty -x^2 e^{-ax^2} dx = \int_0^\infty \frac{\partial}{\partial a} e^{-ax^2} dx$$

$$= \frac{d}{da} \int_0^\infty e^{-ax^2} dx = \frac{d}{da} (\frac{1}{2} \sqrt{\pi} a^{-1/2})$$

$$= \frac{1}{2} \sqrt{\pi} (-\frac{1}{2}) a^{-3/2} = -\frac{1}{4} \sqrt{\pi} a^{-3/2}$$

よって、

$$\int_0^\infty x^2 e^{-ax^2} dx = \frac{1}{4} \sqrt{\pi} a^{-3/2}$$

となる。

この計算は標準正規分布の分散の計算に使われる。

1.4.5 確率論との関係

測度空間 (Ω, \mathcal{M}, m) が $m(\Omega)=1$ をみたすとき、確率空間という。このとき、 \mathcal{M} の元は事象とよばれる。とくに、 Ω は全事象とよばれる。

Mは σ -集合体であるから、次を満たす:

(i) $\Omega \in \mathcal{M}$

1.4. 積分論-1

- $(ii)A \in \mathcal{M} \ \text{abs} \ A^c \in \mathcal{M}$
- $(iii)A_n \in \mathcal{M}, n = 1, 2, \dots$ ならば $\bigcup_{n=1}^{\infty} A_n \in \mathcal{M}$

またmを確率(または確率測度)という。Pとかくこともある。確率は次を満たす。

45

- (i) $0 \le P(A) \le 1$
- $(ii)P(\Omega) = 1$
- $(iii)A_n \in \mathcal{M}(n=1,2,...), A_n \cap A_m = \emptyset (n \neq m)$ ならば

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$$

なお、 $A \cap B = \emptyset$ のとき A と B は排反という。[「A でないとき B」と言っているのではない。普通の日本語とちがう。]

例 1 (1) $\Omega = \{1, 2, 3, 4, 5, 6\}, \mathcal{M} = \mathcal{P}(\Omega), m(A) = \frac{1}{6} \times \#A, A \in \mathcal{M}$ (ここで#A は A の個数を表す。)

これは、さいころを 1回振ったときに出る目を事象とする確率空間である。

(2) $\Omega = \{(i, j); i, j = 1, 2, 3, 4, 5, 6\}, \mathcal{M} = \mathcal{P}(\Omega), m(A) = \frac{1}{36} \times \#A, A \in \mathcal{M}$

これは、さいころを 2回振ったときに出る目の組を事象とする確率空間である。

たとえば、A を、1 度目に 3 の倍数の目が出て、2 度目に 5 の目が出る事象、とすると、

$$\#A = \#\{(3,5), (6,5)\} = 2$$

であるから、 $m(A) = \frac{2}{36} = \frac{1}{18}$ 。

問 1 コインを何度も投げる試行で、n 回目が表となる事象を A_n とする。次の事象を A_n で表し、その確率(数値)を求めよ。

- (i) 最初から n 回表が続く事象
- (ii) 偶数回目は裏ばかりとなる事象
- (iii) 表が無限回出る事象

可測関数 $X:\Omega\to\Omega'$ は確率変数とよばれる。つまり

$$[X \in E] = \{\omega \in \Omega; X(\omega) \in E\} \in \mathcal{M}$$

をみたす。

たとえば、

$$\Omega = \{1, 2, 3, 4, 5, 6\}, \Omega' = \{ A, B \},$$

$$f(1) = f(3) = f(5) = \hat{\sigma}, f(2) = f(4) = f(6) = \mathcal{A}$$

とおくと、各元 $\omega' \in \Omega'$ に対し、 $f^{-1}(\omega') \in \mathcal{M}_{\Omega}$ であるから、f は確率変数である。

例(野球のサイン表)

キャチャーはピッチャーに、敵チームにわからないように情報を送る。 たとえば グーというサインは、「(次に)ストレートを送る」という意味 である。

キャチャー・ピッチャー間で次のサイン表を使うとする。

サイン	グー	チョキ	パー	not グー	notチョキ	notパー
ストレート	0	0	0	×	×	×
カーブ	×	0	0	0	×	×
シュート	×	×	0	0	0	×

たとえば、カーブを投げるよう指示するときには

「チョキ and not グー」

というサインを送る。ただし、たとえば「not グー」はグーを横に振るサインであり、「and」は 2 つのサインを続けて送ることである。

例題 $\mathbf{9}$ $\Omega = \{1, ..., 10\}, \mathcal{M} = \mathcal{P}(\Omega)$ とし、確率 P を $P(A) = \sum_{i \in A} \frac{1}{10}, A \in \mathcal{M}$ とする。 (Ω, \mathcal{M}, P) は確率空間である。

確率変数 $f: \Omega \to \Omega' = \{ \, \bar{\sigma}, \, \bar{f}, \, \dot{\Omega} \, \}$ とする。ここで $f(i) = \bar{\sigma}, \, for \, i = 1, 2, \, f(i) = \bar{f}, \, for \, i = 3, 4, 5, \, f(i) = \dot{\Omega}, \, for \, i = 6, ..., 10$ である。

 $(\Omega', \mathcal{P}(\Omega'))$ 上に確率 $P^f = P \circ f^{-1}$ を次のように構成する。

$$P^f(\vec{x}) = P(\{1,2\}) = \frac{2}{10}$$

$$P^f(\bar{\uparrow}) = P(\{3,4,5\}) = \frac{3}{10}$$

$$P^f(\boxminus) = P(\{6, ..., 10\}) = \frac{5}{10}$$

これが関数 f の確率法則(確率分布)である。

1.4. 積分論-1 47

一般に、X を確率変数とすると、任意の一次元ボレル集合 B に対して その X の逆像の確率 $P(X^{-1}(B))$ が定義可能となる。それを $\mu(B)$ とお く。 μ は (\mathbf{R},\mathcal{B}) 上の確率である。これを確率変数 X の確率分布といい、 μ_X で表す。

これは任意の定数 c について

$$\{\omega \in \Omega; f(\omega) < c\} \in \mathcal{F}$$

となることを意味する。

例題 10 つぼの中に赤球n 個、白球m 個が入っていて、1 個づつ取り出す。全部でN 回取り出しを行うこととする。

(a) 取り出した後再びもとに戻す場合(復元抽出)

赤球が出ることを 1、白球が出ることを-1で表す。起こりうる可能性全体

$$\Omega = \{1, -1\}^N = \{(x_1, ..., x_N); x_i = 1 \text{ or } -1\}$$

 $x = (x_1, ..., x_N)$ に対して

$$N^+(x) = \#\{i; x_i = 1\}, N^-(x) = \#\{i; x_i = -1\}$$

とおく。

$$m(\lbrace x \rbrace) = (\frac{n}{m+n})^{N^{+}(x)} (\frac{m}{m+n})^{N^{-}(x)}, m(A) = \sum_{x \in A} m(\lbrace x \rbrace)$$

とおくと、mは Ω 上の測度となる。さらに、

$$m(\Omega) = \sum_{x_i = 1 \text{ or } -1, i = 1, \dots, N} \left(\frac{n}{m+n}\right)^{N^+(x)} \left(\frac{m}{m+n}\right)^{N^-(x)}$$
$$= \left(\frac{n}{m+n} + \frac{m}{m+n}\right)^N = 1$$

である。

(b) 取り出した後再びもとに戻さない場合(非復元抽出) N < m + n の場合のみ考える。起こりうる場合の全体

$$\Omega = \{(x_1, ..., x_N); N^+(x) \le n, N^-(x) \le m\}$$

である。各試行において赤球を $N^+(x)$ 個、白球を $N^-(x)$ 個取り出すので、その場合の数は

$$n(n-1)\cdots(n-N^+(x)+1)\times m(m-1)\cdots(m-N^-(x)+1)$$

である。よって、

$$m(\{x\}) = \frac{n(n-1)\cdots(n-N^+(x)+1)\times m(m-1)\cdots(m-N^-(x)+1)}{(n+m)(n+m-1)\cdots(n+m-N+1)}$$

一方、 $[x]_{k,l}$ で $N^+(x)=k, N^-(x)=l$ となる元全体を表す (ただしk+l=N) と、赤玉を n 個から k 個取り出し、残ったもの (n-k) 個を選ぶ選び方を考えて

$$m([x]_{k,l}) = \frac{{}_{n}C_{k} {}_{n+m-n}C_{N-k}}{{}_{n+m}C_{N}}$$

とおけば、m(.) は Ω 上の測度になり、 $m(\Omega) = \sum_{k=0}^{N} m([x]_{k,N-k}) = 1$ となる。 $(\sum_{k=0}^{N} {}_{n}C_{k} {}_{m}C_{N-k} = {}_{m+n}C_{N} ($ ヴァンデルモンドの畳み込み) による。演習課題:N に関する帰納法で示せ。)

1.5 積分論-2

1.5.1 Stieltjes 積分

 $\Omega = \mathbf{R}$ とし、g を \mathbf{R} 上単調増加な関数とする。I = [a,b) にたいし g(I) = g(b) - g(a) とおき、

$$g^*(A) = \inf\{\sum_{n=1}^{\infty} g(I_n); A \subset \sum_{n=1}^{\infty} I_n\}, A \subset \mathbf{R}$$

として外測度 g^* を導入する。これを Lebesgue-Stieltjes 外測度という。これから定義される完備な測度を Lebesgue-Stieltjes 測度という。この 測度を dg で表す。

f を R 上の連続関数とし、f の単調増加関数 g に関する Lebesgue-Stieltjes 積分 $\int_a^b f dg$ を次のように定義する:

$$\int_{a}^{b} f dg = \int_{(a,b)} f dg + f(a)(g(a+0) - g(a)) + f(b)(g(b) - g(b-0))$$

とくに、a,b が q の連続点ならば

$$\int_{a}^{b} f dg = \int_{(a,b)} f dg$$

となる。

なお、g が異なれば dg 可測な集合族 \mathcal{M}_g は一般に異なるが、それらは一様にボレル集合族 \mathcal{B} を含んでいる。

1.5. 積分論-2 49

1.5.2 有界変動、p-変分

この節では $\Omega = \mathbf{R}$ とする。関数q(s)は

$$|g|_{t} = \sup_{n \ge 1} \sum_{k=1}^{2^{n}} |g(\frac{tk}{2^{n}}) - g(\frac{t(k-1)}{2^{n}})|$$

が \mathbf{R} の各コンパクト集合上有限であるとき、**有界変動** $(\mathbf{FV})^7$ という。 f を有界関数とし、g を有界変動関数とするとき、積分 $\int_s^t f(u)dg(u)$ を定義することができる。

定義

FV 関数 g(t) に対し、 Stieltjes 積分の意味で

$$I(t) = \int_{s}^{t} f(u)dg(u)$$

とおく。**FV** 関数は 2 つの単調増加関数の差に表わされるので、この定義は意味をもつ。 $g=g^+-g^-,g^+,g^-$ は単調増加とするとき

$$dg = dg^+ - dg^-$$

として Stieltjes 積分を定義する。

もし $u \mapsto f(u)$ が連続の場合には、この定義は上節のものと一致する。 g が **FV** 関数で、f(.) が微分可能の場合には、次の連鎖律がなりたつ:

$$f(g(t)) - f(g(0)) = \int_0^t f'(g(s))dg(s)$$

直線上の絶対連続関数

I = [a,b] を \mathbf{R} の有界閉区間とする。関数 f が絶対連続 (AC) であるとは、任意の $\epsilon > 0$ に対して $\delta > 0$ が存在し、I 内の交わらない区間の列 $(a_i,b_i), j=1,2,...$ で

$$\sum_{j=1}^{n} (b_j - a_j) < \delta$$

を満たすものについて

$$\sum_{j=1}^{n} |f(b_j) - f(a_j)| < \epsilon$$

⁷finite variation

が成り立つことである。

定義から、絶対連続関数は有界変動 (FV)である。 可積分関数の原始関数は絶対連続関数である。

定理 I上の関数 f について次の (i), (ii) は同値である:

- (i) f は I 上絶対連続である。
- (ii) ある可積分関数 g が存在して $f(x) f(a) = \int_a^x g(t) dt$

この定理の $[(ii) \Rightarrow (i) \circ]$ 証明には Radon-Nikodym の定理を用いる 8 。 区間 [a,b] における関数 g の変動 $|g|_{t\in[a,b]}$ $(cf. Sect. 1.5 \pm)$ を V(g,[a,b]) とかく。FV 関数は V(g,[a,b]) が有限である。

p-変分

上と同じようにして、関数 qの p-変分を次のように定義する。

$$|g|_t^{(p)} = \sup_{n \ge 1} \sum_{k=1}^{2^n} |g(\frac{tk}{2^n}) - g(\frac{t(k-1)}{2^n})|^p$$

ただし $p \ge 1$ とする。g の 1-変分が有限ということは、g が有界変動関数 であるということである。

反復積分の列

$$(1, g_t^1, g_t^2, \dots)$$

の各成分 $g_t^k = \int_{0 \le u_1 < \dots < u_k < t} dg(u_1) \dots dg(u_k), \ k=1,2,\dots$ は、p-変分ノルムを使って評価できる。

1.5.3 Radon-Nikodymの定理

完全加法的集合関数

 (Ω, \mathcal{M}, m) 上に可積分関数 f が与えられたとき、 $\int_A f(x) m(dx)$ を F(A) とかく。このとき、 $-\infty < F(A) < +\infty$ であり、

$$A = \bigcup_{n=1}^{\infty} A_n \ (A_i \cap A_j = \emptyset, i \neq j)$$

 $[\]overline{g}(\mathbf{i}):F(a)=\int^af(x)d\mu(x),F(b)=\int^bf(x)d\mu(x)$ then $F(b)-F(a)=\int_a^bf(x)d\mu(x)\leq \|f\|_{L^1}\times (b-a)$ (ii) ⇒ (i) は以下。

1.5. 積分論-2

51

とすると

$$F(A) = \sum_{n=1}^{\infty} F(A_n)$$

となっている。しかし、F(A) は負の値もとりうるので、測度ではない。 測度を拡張した概念である。

定義 $A \in \mathcal{M}$ にたいし実数または $+\infty$, $-\infty$ を対応させる対応 Φ が次を満たすとき、 Φ を完全加法的集合関数という。(別名:符号付測度 signed measure)

$$(1)\Phi(\emptyset) = 0$$

$$(2)A_1, A_2, \dots \in \mathcal{M}, A_i \cap A_j = \emptyset, i \neq j$$
 に対し $\Phi(\sum_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \Phi(A_n)$

なお、 $\Phi(A)=+\infty, \Phi(B)=-\infty$ となる $A,B\in\mathcal{M}$ の組は存在しない。 なぜならば、もし存在したとすると、 $A\cup B\in\mathcal{M}$ 。また (2) より

$$\Phi(A) = \Phi(A \setminus B) + \Phi(A \cap B) = +\infty$$

$$\Phi(B) = \Phi(B \setminus A) + \Phi(A \cap B) = -\infty$$

となるから、

$$\Phi(A \cup B) = \Phi(A \setminus B) + \Phi(B \setminus A) + \Phi(A \cap B)$$

の中に $\infty - \infty$ が現れてしまう。この値は定義できないので、 $A \cup B \in M$ であることに矛盾する。

完全加法的集合関数は次の性質をもつ:

$$(1)$$
 $A_i \in \mathcal{M}, A_1 \subset A_2 \subset \cdots$ にたいし

$$\lim_{n \to \infty} \Phi(A_n) = \Phi(\cup_{n=1}^{\infty} A_n)$$

$$(2)$$
 $A_i \in \mathcal{M}, A_1 \supset A_2 \supset \cdots, |\Phi(A_1)| < +\infty$ にたいし

$$\lim_{n \to \infty} \Phi(A_n) = \Phi(\cap_{n=1}^{\infty} A_n)$$

証明は測度の場合と同様にできる。

⊕の分解

(1) ハーン分解

 Φ があたえられたとき、 $\Omega = P \cup N, P \cap N = \emptyset$ とかける。ここで、すべての $A \in \mathcal{M}$ にたいし、

$$\Phi(A \cap P) \ge 0, \Phi(A \cap N) \le 0$$

(2) ジョルダン分解

Φ はただ 1 通りに

$$\Phi = \Phi^+ - \Phi^-$$

とかける。ここで、 Φ^+,Φ^- は各々完全加法的集合関数で、すべての $A\in M$ にたいし

$$\Phi^+(A) > 0, \Phi^-(A) > 0$$

である。

つまり

$$(A, N; \Phi) \Leftrightarrow (\Omega; \Phi^+, \Phi^-)$$

例 2

$$\Phi(A) = F(A) = \int_A f(x)m(dx),$$

 $f(x) = f^{+}(x) - f^{-}(x), f^{+}(x) = \max(f(x), 0), f^{-}(x) = \max(-f(x), 0)$ $\geq h \leq 0$

$$P^+ = \{x; f^+(x) > 0\}, N^- = \{x; f^-(x) > 0\}, K = \{x; f(x) = 0\}$$

とおくと、 $\Omega=P^+\cup N^-\cup K$ (互いに素) とかける。 $K=K_1\cup K_2$ ($K_1\cap K_2=\emptyset$) と分解し、 $P=P^+\cup K_1, N=N^-\cup K_2$ とおけば、

$$\Omega = P \cup N, \ P \cap N = \emptyset$$

であり、

$$F(A \cap P) = \int_{A \cap P} f(x)m(dx) = \int_A f^+(x)m(dx) \ge 0$$

1.5. 積分論-2 53

$$F(A\cap N)=\int_{A\cap N}f(x)m(dx)=-\int_{A}f^{-}(x)m(dx)\leq 0$$
 となっている。 $(\!\!\!/\!\!\!\!/-\!\!\!\!\!/-\!\!\!\!\!/-\!\!\!\!\!/)$

また、

$$F^{+}(A) = \int_{A} f^{+}(x)m(dx), F^{-}(A) = \int_{A} f^{-}(x)m(dx)$$

とおくと、

$$F = F^{+} - F^{-}, F^{+}(A) > 0, F^{-}(A) > 0$$

である。(ジョルダン分解)

ハーン分解、ジョルダン分解の存在の証明は省略する。

2つの分解の関係

$$\Phi(A) = \Phi(A \cap \Omega) = \Phi((A \cap P) \cup (A \cap N)) = \Phi(A \cap P) + \Phi(A \cap N)$$

よって

$$\Phi^+(A) = \Phi(A \cap P), \Phi^-(A) = -\Phi(A \cap N),$$

とおくと、 $\Phi = \Phi^+ - \Phi^-$ となり、これが Φ のジョルダン分解を与える。 o ジョルダン \to ハーン

 $\Phi = \Phi^+ - \Phi^-$ とする。 Φ^+, Φ^- は次で与えられる:

$$\Phi^+(A) = \sup \{ \Phi(E); E \in \mathcal{M}, E \subset A \}$$

 $\Phi^-(A)=-\inf\{\Phi(E); E\in\mathcal{M}, E\subset A\}=\sup\{-\Phi(E); E\in\mathcal{M}, E\subset A\}$ これからハーン分解を次のようにしてつくる。 $\alpha=\sup\{\Phi(A); A\in\mathcal{M}\}$ とおく。各 $n=1,2,\dots$ に対し (A_n) を

$$\Phi(A_n) \ge \alpha - \frac{1}{2^n}$$

ととることができる。 $ar{A}_n = \cup_{k=n}^\infty A_k$ とおく。また

$$A_{n,m} = A_n \cup A_{n+1} \cup \dots \cup A_{n+m}$$

とおくと、
$$m \to \infty$$
 のとき $A_{n,m} \to \bar{A}_n$ となる。 $A_{n,m+1} = A_{n,m} \cup A_{n+m+1}$ であるから

$$\Phi(A_{n,m+1}) = \Phi(A_{n,m} \cup A_{n+m+1})$$

$$= \Phi(A_{n,m}) + \Phi(A_{n+m+1}) - \Phi(A_{n,m} \cap A_{n+m+1})$$

$$\geq \Phi(A_{n,m}) + \alpha - \frac{1}{2^{n+m+1}} - \alpha$$

$$= \Phi(A_{n,m}) - \frac{1}{2^{n+m+1}}$$

すなわち

$$\Phi(A_{n,m+1}) - \Phi(A_{n,m}) \ge -\frac{1}{2^{n+m+1}}$$

となる。これをm = 0, 1, 2, ...について足すと

$$\Phi(A_{n,p}) - \Phi(A_{n,m})$$

$$= \Phi(A_{n,p}) - \Phi(A_{n,p-1}) + \Phi(A_{n,p-1}) - \Phi(A_{n,p-2}) + \dots + \Phi(A_{n+1}) - \Phi(A_n)$$
$$\geq -\frac{1}{2^{n+p}} - \dots - \frac{1}{2^{n+1}}$$

より、

$$\Phi(A_{n,p}) \ge \Phi(A_n) - \frac{1}{2^{n+1}} - \dots - \frac{1}{2^{n+p}}$$

$$\ge (\alpha - \frac{1}{2^n}) - \frac{1}{2^{n+1}} - \dots - \frac{1}{2^{n+p}}$$

 $2200 p \rightarrow \infty 2528$

$$\Phi(\bar{A}_n) \ge \alpha - \frac{1}{2^n} (1 + \frac{1}{2} + \frac{1}{2^2} + \dots)$$
$$= \alpha - \frac{1}{2^{n-1}}$$

 $P = \limsup_{n \to \infty} A_n$ とおく。 $\bar{A}_n \to P$ だから

$$\Phi(P) \ge \alpha$$

一方、 α の定義より $\Phi(P) \leq \alpha$ 。 よって $\Phi(P) = \alpha = \sup\{\Phi(A); A \in \mathcal{M}\}$ となる。

ここで $A \subset P$ に対し、もし $\Phi(A) < 0$ なら

$$\Phi(P \setminus A) = \Phi(P) - \Phi(A) > \Phi(P) = \alpha$$

1.5. 積分論-2 55

となって α の定義に矛盾する。よって $\Phi(A) \geq 0$ である。 また $A \cap P = \emptyset$ なる A に対し、もし $\Phi(A) > 0$ ならば

$$\Phi(A \cup P) = \Phi(A) + \Phi(P) > \Phi(P) = \alpha$$

となって α の定義に矛盾する。よって $A \subset P^c$ に対し $\Phi(A) \leq 0$ となる。 $N = \Omega \setminus P$ とおく。上より、これらの P, N が Ω のハーン分解を与える。

ラドン=ニコディムの定理 (Radon-Nikodym)

Φ を完全加法的集合関数とする。Φ がどのような条件を満たしていれば

$$\Phi(A) = \int_{A} \tilde{f}(x) m(dx)$$

と表されるかを考察する。

定義 完全加法的集合関数 Φ のジョルダン分解 $\Phi = \Phi^+ - \Phi^-$ に対し

$$|\Phi| = \Phi^+ + \Phi^-$$

とおく。べつの完全加法的集合関数 Ψ について

$$|\Phi|(A) = 0 \Rightarrow \Psi(A) = 0$$

がすべての $A \in M$ についてなりたつとき、 Ψ は Φ に関して絶対連続であるという。このとき $\Psi << \Phi$ とかく。

絶対連続でないとき、つまりある $N \in \mathcal{M}$ があって、 $\Phi(N) = 0$ かつ $\Psi(\Omega \setminus N) = 0$ となるとき、 Φ と Ψ は互いに特異であるという。(このとき Φ と Ψ は同値でない。)

例 実数直線上のヘヴィサイドの階段関数

$$H(x) = 0, x < 0; 1, x \ge 0$$

は、その分布的導関数($distributional\ derivative$)としてディラックのデルタ関数 δ_0 を持つ。

これは実数直線上の測度で、0 において点質量($point\ mass$)を持つ。 しかし、ディラック測度 δ_0 はルベーグ測度 λ に関して絶対連続ではな く、 λ も δ_0 に関して絶対連続では無い。 すなわち、 $\lambda(\{0\})=0$ であるが $\delta_0(\{0\})=1$ であり、また U を任意の開集合で 0 を含まないものとするなら、 $\lambda(U)>0$ であるが $\delta_0(U)=0$ である。

なお、ジョルダン分解 $\Phi=\Phi^+-\Phi^-$ において、 Φ^+ と Φ^- は互いに特異な測度である。

定義 (Ω, \mathcal{M}, m) が σ -有限とは、ある $A_n \in \mathcal{M}, n = 1, 2, ...$ が存在し

(1)
$$m(A_n) < +\infty, n = 1, 2, ...$$

(2)
$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots \to \Omega$$

がなりたつことである。

定理 (Radon-Nikodym) (Ω, \mathcal{M}, m) を σ -有限な測度空間とする。 Φ は \mathcal{M} 上定義された完全加法的集合関数で

(1)
$$|\Phi|(\Omega) < \infty$$

(2)
$$\Phi << m$$

をみたすとする。このときある \tilde{f} が存在し、すべての $A \in \mathcal{M}$ に対し

$$\Phi(A) = \int_{A} \tilde{f}(x)m(dx)$$

とかける。さらに、 \tilde{f} は一意的に定まる。

この \tilde{f} はRadon-Nikodym 微分とよばれ、m-a.e. に一意的に決まる。 \tilde{f} を $\frac{d\Phi}{dm}$ とかく。(p.49の定理 $(ii) \Rightarrow (i))$

定理 $\mathbf{2}(Radon\text{-}Nikodym(2))$ (Ω, \mathcal{M}, m) を $m(\Omega) < +\infty$ をみたす測度空間とする。 ν を (Ω, \mathcal{M}, m) 上定義された測度で、

(1)
$$\nu(\Omega) < \infty$$

(2)
$$\nu << m$$

をみたすとする。このときある \tilde{f} が存在して、すべての $A \in M$ に対して

$$\nu(A) = \int_{A} \tilde{f}(x) m(dx)$$

1.5. 積分論-2 57

がなりたつ。

上の定理で、逆に $\nu(.)$ が上のように書ければ、 $\nu << m$ は明らかである。 $\nu << m$ のとき、上の \tilde{f} を測度 m に関する ν の密度関数という。なお、高校での変数変換の公式:

$$y = \phi(x)$$
 のとき $dy = \phi'(x)dx$

はこの定理の特別な場合である。

証明 of 定理 1, 2(Radon-Nikodym)

例 $3(\Omega, \mathcal{M}, P)$ を確率空間とする。 $A \in \mathcal{M}$ を 1 つ固定する。· が起こった時の A の条件つき確率を次で定義する:

$$P(A|\cdot) = \frac{P(A \cap \cdot)}{P(\cdot)} \quad if \quad P(\cdot) > 0$$
$$= 0 \qquad \qquad if \quad P(\cdot) = 0$$

このとき A が何であっても $P(A \cap \cdot) << P(\cdot)$ である。したがって Radon-Nikodym 微分 $\frac{dP(A \cap \cdot)}{dP(\cdot)}$ が条件つき確率 $dP(A|\cdot)$ を与える。 つまり

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

である。

サイコロを 1回投げたとき、3の目が出る事象を A とし、奇数の目が出る事象を B とすると、

$$P(A|B) = \frac{1}{3}$$

である。

- 例 4 年間の入院件数 N は平均 λ のポアソン分布に従い、入院した時の入院患者の年齢が 60 歳以上である確率は p とする。 60 歳以上である入院患者が年間 k 人である確率はいくらか。
- (解)年間の、60歳以上で入院する人の数を X とする。X=k のとき $N \geq k$ であるから、X=k という事象を N の値で分類する。

$$P(X = k) = \sum_{n=k}^{\infty} P(X = k, N = n)$$

$$= \sum_{n=k}^{\infty} P(X = k|N = n)P(N = n)$$

P(X=k|N=n) について。入院患者数 n のうち 60 歳以上の人が k 人いる条件付き確率は

$$P(X = k|N = n) = {}_{n}C_{k}p^{k}(1-p)^{n-k}$$

という二項分布になる。これより

$$P(X = k) = \sum_{n=k}^{\infty} {}_{n}C_{k}p^{k}(1-p)^{n-k}e^{-\lambda}\frac{\lambda^{n}}{n!}$$

$$= e^{-\lambda}\frac{(\lambda p)^{k}}{k!}\sum_{n=k}^{\infty}\frac{(\lambda(1-p))^{n-k}}{(n-k)!}$$

$$= e^{-\lambda}\frac{(\lambda p)^{k}}{k!}e^{\lambda(1-p)} = e^{-\lambda p}\frac{(\lambda p)^{k}}{k!}$$

となる。(平均 λp のポアソン分布)

定理2の証明

Step 1 以下では、 $L^2(m+\nu)$ で L^p 空間で p=2 としたもの(測度は $m+\nu$)、 $L^1(m+\nu)$ で L^p 空間で p=1 としたもの(測度は ν)を表す。 (1-1)

$$f \in L^2(m+\nu) \Rightarrow f \in L^1(\nu)$$

証明

 $f \in L^2(m+\nu)$ とすると、

$$\int |f| d\nu \le \int |f| d(m+\nu) = \int 1 \cdot |f| d(m+\nu)$$

$$\le (\int 1 d(m+\nu))^{\frac{1}{2}} \cdot (\int |f|^2 d(m+\nu))^{\frac{1}{2}} < +\infty \quad by \quad (1)$$
 (a)

(1-2) $f \in L^2(m+\nu)$ に対し、

$$L(f) = \int f d\nu \tag{b}$$

とおくと、L(f) は $L^2(m+\nu)$ から ${\bf R}$ への線形写像になる。

1.5. 積分論-2

証明

$$L(\alpha f + \beta g) = \int (\alpha f + \beta g) d\nu$$
$$= \alpha \int f d\nu + \beta \int g d\nu = \alpha L(f) + \beta L(g).$$

f の $L^2(m+\nu)$ におけるノルムを ||f|| で表す。 (a) より

$$|L(f)| \le ((m+\nu)(\Omega))^{\frac{1}{2}} \cdot ||f||_{L^2}.$$

これより L(f) は $L^2(m+\nu)$ から ${\bf R}$ への連続な線形写像である。

Step 2

 $L^2(m+\nu)$ 上のリースの定理より、連続な線形写像 L(f) は、ある $h_0 \in L^2(m+\nu)$ があって、

$$L(f) = \int f \cdot h_0 d(m+\nu) \tag{c}$$

59

と表される。ここで $f \ge 0$ のとき $L(f) = \int f d\nu \ge 0$ であるから、 $h_0(x) \ge 0$ である。 (b), (c) より

$$\int f \cdot (1 - h_0) d\nu = \int f \cdot h_0 dm \tag{d}$$

がなりたつ。

ここで

$$E = \{x; h_0(x) \ge 1\}$$

とおくと、 $\nu << m$ より $\nu(E) = 0$ である。

証明

$$0 \le m(E) = \int \varphi(x)dm \le \int \varphi(x)h_0(x)dm$$

$$= \int \varphi(x)(1 - h_0(x))d\nu \le 0$$

((d) より)。 これより m(E)=0 である。 $\nu<< m$ より $\nu(E)=0$ である。

$$g(x) = h_0(x) \cdot (1 - \varphi(x))$$

とおくと、 $\nu(E)=0, m(E)=0$ より、g と h_0 は m に関しても ν に関してもほとんど至る所等しい。 ((d)')

また、 $0 \le 1 - \varphi(x) \le 1, h_0(x) < 1$ on E^c であるから、 $0 \le g(x) < 1$ である。

さらに、gの定義より

$$\int f \cdot (1 - g) d\nu = \int f \cdot (1 - h_0 + h_0 \cdot \varphi) d\nu$$

$$= \int f \cdot h_0 dm + \int f \cdot h_0 \varphi d\nu \quad by \quad (d)$$

$$= \int f \cdot h_0 dm - \int f \cdot h_0 \varphi dm \quad (by \quad (d)', E = \{h_0 \ge 1\} \text{ and } \nu(E) = 0, m(E) = 0)$$

$$= \int f \cdot h_0 (1 - \varphi) dm = \int f \cdot g dm \qquad (e)$$

である。

Step 3

f を有界関数とする。仮定より $(m+\nu)(\Omega)<+\infty$ だから、 $f\in L^2(m+\nu)$ である。また、g の定義により g は有界関数である。よって

$$(1+g+\cdots+g^{n-1})f \in L^2(m+\nu).$$

(e) より

(左辺) =
$$\int (1+g+\dots+g^{n-1})f(1-g)d\nu = \int (1+g+\dots+g^{n-1})fgdm = (右辺)$$

ここで
$$0 \le g(x) < 1$$
だから、上式は

$$\int (1 - g^n) f d\nu = \int \frac{1 - g^n}{1 - g} f(1 - g) d\nu = \int \frac{g}{1 - g} (1 - g^n) f dm \qquad (f)$$

とかける。

ここで |g|<1 だから、 $n\to\infty$ のとき $(1-g^n)f$ は単調に増加して f に収束する。よって (f) で $n\to\infty$ とすると

$$\int f d\nu = \int \frac{g}{1 - g} f dm \tag{g}$$

f=1 とおくと、 $\frac{g}{1-g}\in L^1(m)$ となる。

1.5. 積分論-2 61

そこで $\tilde{f} = \frac{g}{1-g}$ とおく。(g)で $f = 1_A$ ととると、

$$\int f d\nu = \nu(A) = \int_A \tilde{f}(x) dm(x)$$

となって、主張が成立する。 q.e.d.

系(A)

 λ, μ, ν を σ -有限な測度とする。このとき、(1) $\nu << \lambda, \lambda << \mu$ ならば

$$\frac{d\nu}{d\mu} = \frac{d\nu}{d\lambda} \cdot \frac{d\lambda}{d\mu} \quad \mu - a.e.$$

 $(2) \lambda_1 << \mu, \lambda_2 << \mu$ ならば

$$\frac{d}{d\mu}(\lambda_1 + \lambda_2) = \frac{d\lambda_1}{d\mu} + \frac{d\lambda_2}{d\mu} \quad \mu - a.e.$$

B

 λ, μ は σ -有限な測度とする。 $\lambda << \mu, \mu << \lambda$ ならば、

$$\frac{d\lambda}{d\mu} = \frac{1}{\frac{d\mu}{d\lambda}} \quad \mu - a.e.$$

である。

1.5.4 L^p -空間

 $E \in \mathbf{R}^d$ とし、 $(E, \mathcal{B}(E), dx)$ を測度空間とする。 $1 \leq p < +\infty$ とする。 $f: E \to \mathbf{R}$ にたいし

$$||f||_{L^p} = (\int_E |f(x)|^p dx)^{1/p}$$

をfの L^p ノルムという。

$$L^p(E) = \{ f \in L(E); ||f||_{L^p} < +\infty \}$$

を E 上の L^p 空間という。ただし、L(E) は E 上のルベーグ可測関数全体を表す。

 $L^p(E)$ は和とスカラー倍について閉じており、無限次元ベクトル空間になる。また、 $L^p(E)$ はノルムに関して完備 (収束先が $L^p(E)$ の中にある) ことから、バナッハ空間になる。

いくつかの不等式

命題 (ヘルダーの不等式)

 $1 にたいし、 <math display="inline">f \in L^p(E), g \in L^q(E)$ ならば

$$\int_{E} |f(x)g(x)| dx \le ||f||_{L^{p}} \cdot ||g||_{l \ q}$$

とくに、p = q = 2 のとき、Schwarz の不等式という。

参考文献

[1] *I.* カラザス *(*著*), S.E.* シュレーブ *(*著*),* 渡邉 壽夫 *(*翻訳*)* ブラウン運動と確率積分

丸善出版 (2011/11/1) ISBN-10: 4621062859

[2] 吉田伸生

ルベーグ積分入門 使うための理論と演習

日本評論社; 新装版 (2021/3/11) ISBN-10: 453578941X

[3] 原啓介

測度・確率・ルベーグ積分 応用への最短コース (KS理工学専門書) 講談社 (2017/9/21) ISBN-10:4061565710

[4] 新井 仁之

ルベーグ積分講義—ルベーグ積分と面積 0の不思議な図形たち日本評論社 (2003/1/1) ISBN-10:4535783748