EXAMPLES CONCERNING EXTENSIONS
OF CONTINUOUS FUNCTIONS

CAMILLO COSTANTINI! AND DMITRI SHAKHMATOV

ABsTRACT. Given a space Y, let us say that a space X is a total extender for Y
provided that every continuous map f: A — Y defined on a subspace A of X admits
a continuous extension f : X — Y over X. The first author and Alberto Marcone
proved that a space X is hereditarily extremally disconnected and hereditarily nor-
mal if and only if it is a total extender for every compact metrizable space Y, and
asked whether the same result holds without any assumption of metrizability on Y.
We demonstrate that a hereditarily extremally disconnected, hereditarily normal,
non-collectionwise Hausdorff space X constructed by K. Kunen is not a total exten-
der for K, the one-point compactification of the discrete space of size wi. Under the
assumption 2¥0 = 2“1 we provide an example of a separable, hereditarily extremally
disconnected, hereditarily normal space X that is not a total extender for K. Fur-
thermore, using forcing we prove that, in the generic extension of a model of ZFC
+ MA(w1), every first-countable separable space X of size w1 has a finer topology 7
on X such that (X, 7) is still separable and fails to be a total extender for K. We
also show that a hereditarily extremally disconnected, hereditarily separable space X
satisfying some stronger form of hereditary normality (so-called structural normal-
ity) is a total extender for every compact Hausdorfl space, and we give a non-trivial
example of such an X.
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0. INTRODUCTION AND PRELIMINARY RESULTS.

In the paper [CM] it is proved that a topological space X is (hereditarily) normal
and hereditarily extremally disconnected if and only if for every compact metrizable
space Y and every continuous function f from a subspace of X to Y, there is a
continuous f:X — Y which extends f—Theorem 7.5. In the same paper, the
authors show that the assumption of compactness on Y cannot be dropped; actually,
this follows from a still more negative result (see Proposition 7.7).

Of course, another natural question in this vein—which is pointed out as well
by the authors of [CM]—would be whether in the above statement we may drop
the hypothesis of metrizability on Y (leaving the assumption of compactness un-
changed). In this paper we first give a negative answer to such a question, using as
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X a space constructed by K. Kunen in 1977. Then, a new question which naturally
arises is whether we may further require, in the counterexample, the space X to
be separable. Actually, we do not know what the answer is in ZFC; however, we
show that it is possible to obtain such a separable X by assuming that 2¥° = 2“1,
Finally (and this is, in some sense, the core of the paper), we use a suitable notion of
forcing to show that, consistently, it is possible to adopt a similar procedure to get
our desired X, starting from any space belonging to a rather large class—mamely,
the separable first-countable spaces of cardinality w;.

The last section of the paper is devoted to the study of some (nontrivial) situa-
tions where the extension property works. It turns out that a very strong version of
normality introduced in [CM] (namely, structural normality), together with heredi-
tary separability, may play a crucial role in obtaining spaces X having the extension
property with respect to every compact space Y (cf. Corollary 11).

All the counterexamples to the extension property that we provide in this paper
are founded on the same basic idea, that is illustrated by the following proposition
(to be systematically used in the next sections). Such a result should also make clear
why it is so natural to wonder about the existence of a separable counterexample,
once we have one of density wq; actually, the question seems to be linked with some
combinatorial properties of p(w).

Proposition 1. Let E',E" be two disjoint (infinite) sets and suppose to have
associated to every x € E' a non-principal ultrafilter U(z) on E", in such a way
that the following hold:

1) for every L C E’, there is a function U on E’ such that U(x) € U(x) for

every x € E', and
(Ju@)n( U U@) =0

z€L z€E'\L

2) there is no function U associating to every z € E' a U(xz) € U(z), such that
U(z) NU(y) =0 for all distinct z,y € E'.

Put X = E'UE", and let T be the topology on X making all elements of E"
isolated, while every x € E' has a fundamental system of (open) T-neighborhoods
given by: {{z} UU |U € U(x)}. Then (X,T) is a (hereditarily) normal, hereditarily
extremally disconnected space; moreover, if |E'| = ( and Y is any compactification
of D(C) (=the discrete space of cardinality ¢, in accordance with [En, Example
1.4.20]), then every one-to-one mapping f from E’ onto D({) turns out to be a
continuous function from a subspace of (X, 7T) to Y which cannot be extended to
any continuous f: (X,7) = Y.

Proof.

a) Normality. Of course, X is T; because the ultrafilters U (z) are non-
principal. Let C;,Cs be closed disjoint subsets of X: Then A; = C; N E" is
open in X for i = 1,2. Let also L; = C; N E’ for ¢ = 1,2: As a consequence of 1),
it is possible to associate to every x € L1 U Ly a U(z) € U(z) in such a way that

(U u@)n(J v@)=0
zelq xz€Lo
Then it is easily seen that

Wy = (AU | ({2} uU(@) N (X\ Cy)

$€L1
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and

Wy = (420 | ({z}uU@))n(X\ Cy)

z€Ls

are disjoint open sets which include C; and Cs, respectively.

b) Hereditary extremal disconnectedness. We will use the following criterion
(cf. [KP, Theorem 2] or [CM, Lemma 7.3]): A Ts-space is hereditary extremally
disconnected if and only if for every pair A, B of its subsets with ANB = BNA = ()
(i.e., for every A, B separated subsets of X), we have that AN B = (). Thus, suppose
A, B C X are separated: We only have to show that no element of E’ may be
adherent to both A and B. Actually, given z € E’, we may assume that z ¢ AU B
(otherwise, since ANB = BNA = (), we would have either Z ¢ Borz ¢ A). AsU(Z)
is an ultrafilter on E”, it must contain either AN E” or E” \ (AN E"); therefore,
either {Z}U(ANE") is a neighborhood of Z disjoint from B, or {Z}U(E" \ (ANE"))
is a neighborhood of z disjoint from A.

c¢) Non-extensibility. Suppose that f is a continuous extension of f. Putting,
for every z € E', Vo, = f ' ({f()}) (= F'({f(z)})) would give pairwise disjoint
neighborhoods of the points z. Then, intersecting with E”, we would contradict
(2). O

Remark. If E’, E” are such that |E'| > |E”|, then condition 2) of the statement
of the above proposition is automatically satisfied.

Remark. Using standard techniques about C*-embedded spaces, it is easy to prove
(cf., for example, [CM, Proposition 7.4], which partially relies on [GJ, Exercise 6R2])
that for a normal, extremally disconnected space, hereditary normality is equivalent
to hereditary disconnectedness. For a measure-theoretic proof of the same result,
see [He, Theorem 2.8].

Remark. If, in the above proposition, we take as Y the one-point compactification
of D((), then Y is a Fréchet-Urysohn, Eberlein compact space. Moreover, Y is also
oy (for the definition, see for example [No, §2]). As a consequence, the spaces
X from Examples 4, 5 and Corollary 8 have the non-extension property even with
respect to some suitable compact space Y with the above additional characteristics.

1. THE ZFC AND ZFC+(2¥° = 2¥') EXAMPLES.

In both constructions produced in this section, a basic réle will be played by the
classical notion of independent family. Recall that a family {A;};c; of subsets of a
set M is said to be an independent family if for every pair 1, I3 of finite disjoint
subsets of I, the set (ﬂze I Ai) \ (Uze I Ai) is nonempty. The two lemmas below
state some very natural links between independent families and finitely additive
measures.

Actually, Lemma 2 is well-known enough as folklore among experts of abstract
measure theory; but a precise reference for it seems quite hard to find in the liter-
ature (cf., [Gr] and [Bal]). Thus, for the sake of completeness, we have given it a
proof.

Lemma 2. Let {A;};cr be an infinite independent family on a set M. Then there
exists a finitely additive measure p on (M) such that for every finite J C I and
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every s:J — 2, we have that

( ﬂ AS(Z)) LJ (A)

i€J

where A} = A; and AY = M \ A; for everyi € I.

Proof. Let A’ be the collection of all sets ﬂZGJAs(’), with J € [I]<% and s:J — 2

(so that, in particular, M = ;4 Azo(i) € A'), and A be the collection of all finite
unions of elements of A’. Then A is an algebra of sets, as it is closed under finite
union and complementation—to see the last fact, consider that

h=1 i€Jy h=1 1i€Jy
n
1—9,(2 1-9
YA -y (arne
h=1 1i€Jy (il,...,in)EJlx...XJn

If we can prove the existence of a finitely additive measure p on A satisfying (A),
then a well-known extension property (see, for example, [Wa, Theorem 10.7] or
[Fr2, Corollary 391G]) will give the desired result.

Let Fn(I,2) be the set of all functions from a finite subset of I to 2, and

A= {@e[FnI2)]<“"( N A‘”’)m( N Af"“)):@

1€dom 9§/ i€dom 9"’

for distinct @', 9" € @};

then, for every © € A, put

¢ . 1
- ﬁLeJ@ (iEQmﬁA?( )) €4) and 7(0) = EﬂE@W'

Observe that A: A — A is onto. Indeed, suppose that A = Un=1 (Nic I (Aﬁh(z)))
is an element of A, and put J = |J;_, Ji: For every h € {1,...,n}, letting

On = {9 €72|9l5,=Vn},

we easily see that (;c; A, AP Usco, (ﬂZEJAﬁ(Z)). Therefore, putting © =

Uh=1 ©n, we obtain that A = Jyee (ﬂiedomﬁAf(z)) = A(©) (observe that ©
belongs to A because all its elements have the same domain .J, so that for distinct
99" € © there must be i € J with 9/(3) # 9”(s), and hence (M, A7 @) N
(ﬂzEJ A19 (2)) C Aﬁ (@) ﬂAQ9 @ _ = ().

Now we prove that, given any ©’,0” € A such that A(®') = A(0"), we have
f(©") = [i(©"). Indeed, if we are in such a situation, we put J = Jyceuer domd
and, for every 9 € ©' UBO", Ay = {)\ €’2 ‘ A dom 9= 19}. Then N A —

ieJ

i€dom ¢
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Uxen, (ﬂieJA;‘(i)) for every ¥ € ©' U ©"; moreover, letting A’ = (Jycq Ay and
A" = Jgeen Ao, we have (like before) that A’, A" € A, and that

im=U (N a”)=U U (N x4

AEA’  i€dom A YEO' A€Ay i€domA
=U( N 49 =4e)=4en= ( N 4?)
Ye®’ iedom Y€E®’ i€domd
JU(N 49=U (N 40)-inn
9€O” AeAy i€dom A AEA”  j€dom A

Since all the elements of A’ UA” have the same domain, and the family {A4;}ie; is
independent, from A(A') = A(A") We easily deduce that A’ = A”. Also, we have
that /Nf'(A/) = E)\GA’2|do];n)\| ‘AI| : 2|J| = ﬁzﬁeel‘]\g‘ = ﬁzﬁegﬁl‘]'_'domﬁ' =
Yocor g = A(©'), and in a symmetric way it is proved that A(A”) = A(©").
Therefore, 1(©") = n(A") = p(A") = p(6").

The properties of A and . we have proved so far allow us to define pu: A — [0, +00|
(actually, p: A — [0,1]) by u(A) = ji(©), where © € A is such that A(©) = A.
Then it is easy to see that p satisfies condition (A) of the statement—observe, in
particular, that taking as s the empty function we have u(M) = ,u(ﬂze@ As(i)) =

i({0}) = & = 1. Suppose now to have two disjoint Ay, As € A, with A; = A(©,)
and Ay = A(@g) then (N;cdom 19141;9(2)) N (Nicdom )‘Af‘(z)) = () for different 9, \
belonging either both to ©; or both to ©,. Moreover, since A; N Ay = (), the
above intersection is empty also if ¥ € ©; and A € ©y—or vice-versa. Therefore,
©:NO; =0,0,U0 € A, A(O;UBOy) = A;UA,, and p(A;UAy) = i(0,UB,) =
29€0,00, gt = (Soco, graemar) T (Zoeo, gromar) = B(O1) + [i(O2) = (A1) +
n(Az). O

Lemma 3. Let {A;};cr be an (infinite) independent family on a set M, and p a
finitely additive measure on (M) satisfying condition (A) of Lemma 2. Then for
every ¢:1 — 2 there is an ultrafilter U on M such that {A;.p(z) liel} CU and
VF e U: u(F) > 0.

Proof. The collection
® = {F|Fis afilter on M, {49 |i € I} C F,VF € F: u(F) > 0}

is clearly inductive; also, it is nonempty, because by condition (A) of Lemma 2

and by monotonicity of y it contains the filter generated by {A;p(i) |i € I'}. Thus,
by Zorn’s lemma, ® contains a maximal element /. By contradiction, suppose
U is not an ultrafilter: Then there is L C M such that L,M \ L ¢ U. Notice
that either VF € U:u(F NL) > 0 or VF € U:p(F N (M \ L)) > 0 (or both):
Otherwise, there would be Fi, F» € U with u(Fy N L) = p(F, N (M \ L)) =0,
so that by monotonicity p((F1 N Fy) NL) = pu((FiNF)N (M \ L)) =0, and
hence p(Fi N Fy) = p((FiNF)NL)+ p((FLnF)n(M\ L) =0+0=0,
which would contradict F; N Fy € U € ®. Therefore, either {FNL|F € U} or
{FN(M\L)|FeU} is a basis for a filter on M which properly extends ¢ and
contains no zero-measure set. A contradiction. [J
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Remark. The ultrafilter ¢ provided by the above lemma is always non-principal,
as p({z}) = 0 for every z € M. Indeed, if by contradiction u({z}) > 5= for some

n* € w, then fix any J C I with [J| = n* and let L = (N;cy, As) \ (Uses, (M \
A;)), where Jy = {i € J|z € A;} and Jo = {i € J |z ¢ A;}. Then u(L) = 5= and
x € L, which contradicts the monotonicity of p.

A basic fact about independent families, that we will use in the next examples,
is the well-known Hausdorff-Fichtenholz-Kantorovich theorem, which claims that
on any set M of cardinality x there is an independent family {A;};c; with |I| =
2%. This may be proved in a topological fashion, considering the traces of basic
open subsets of {0,1}?" on a dense subset of cardinality . A different, purely
combinatorial proof is sketched in [Kul, Exercise VIII.(A7)].

The first example we are going to illustrate comes from [Ku2|, where the state-
ments of Lemmas 2 and 3 are also implicit.

Example 4. There are sets E', E", both of cardinality wy, such that conditions
1),2) of Proposition 1 are satisfied.

Proof. Let E', E" be disjoint sets with |E’| = |E"”| = wq, and let F = {As}acoer
be an independent family on E”. By Lemma 2, there is a finitely additive measure
p on p(E") such that condition (A) is satisfied.

Now, let {Hy}ae2¢1 list p(E'), and for every x € E’ define ¢,:2“" — 2 by:

()_{1 if 7 € Hy:
=0 ife ¢ H,.

Then by Lemma 3 and the subsequent remark, we may associate to every z € E’ a
non-principal ultrafilter U (z) on E” such that

{A%+(D) | o € 291} CU(z) and VF € U(z): u(F) > 0.

Let us show that conditions 1),2) of Proposition 1 are fulfilled. If L is any subset
of E', then L = Hy for some & € 2¥*, and we have ¢, (&) = 1 for every z € L and
@z(&) = 0 for every x € E’ \ L. Therefore, putting U(z) = A4 for every x € L and
U(z) =E" \ Ag for every x € E’ \ L, we have that U(x) € U(x) for every = € E’
and that (U,er U(#)) N (Upepnr U(2)) = Aa N (E"\ Aa) = 0.

To prove condition 2) of Proposition 1, consider an arbitrary function U which
associates to every z € E' a U(z) € U(z). Since pu(U(z)) > 0 for every z € E/,
there are n* € w and an infinite M’ C E’ such that p(U(z)) > -t for every z € M.
Then it is impossible that the family {U(z)},cr’ consist of pairwise disjoint sets,
because taking a finite F C M’ with |F| > n*, and using finite additivity and
monotonicity, we would get a contradiction with y(E"”) =1. O

Remark. The construction of the space, having essentially the same properties of
the one outlined by K. Kunen in [Ku2], that has been carried out in [Ta, Example D]
involves a maximal independent family and the A-system lemma, thereby avoiding
any recourse to finitely additive measures. As pointed out by P.J. Nyikos in his
review of [Ta] for Mathematical Reviews, this argument has a gap. P.J. Nyikos
suggests to fulfill the gap by using an independent family of sets whose traces form
a maximal independent family on every intersection of a finite subfamily and the
complements of another, disjoint, finite subfamily. Even if this modification would
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work, we have preferred to give a self-contained argument traced back to Kunen’s
original outline [Ku2]. Incidentally, the proof of normality of X in [Ta, Example
D] also has a minor gap (that is quite easy to fix).

Example 5 (2¥° = 2¥1). There are sets E', E", with |E'| = wy and |E"| = w,
such that conditions 1),2) of Proposition 1 are satisfied.

Proof. Let E', E” be disjoint sets having the required cardinalities. Fix an indepen-
dent family {Aq}ae2« on E” and, using 2¥° = 2% list p(E’) as {Hy}ac2v. Now
define the functions ¢, an in Example 4, and let each non-principal ultrafilter U (x)
include the collection {A2*(®) | o € 291} (without any other restriction). Then con-
dition 1) of Proposition 1 is proved as in Example 4, and condition 2) is immediate
when taking into account the first remark after the same proposition. [

2. THE FORCING CONSTRUCTION.

Lemma 6. If k is a cardinal for which MA(k) holds, I,J are sets (of indices) both
of cardinality < k and, for everyi € I and j € J, A; and B; are elements of [w]*,
then it is possible to associate to everyi € I and j € J sets Al B;- € [w]¥, so that:

(R

VieI:Vje J:(A;C Ai A B; CB; A AjNB;=0).

Proof. Let P be the set of all pairs (¢, %), where ¢, ¢ are functions, dom ¢ € [I]<%,
dom1 € [J]<¥, and:
1) Vi € dom p: p(i) € [A;]<Y;
2) Vj € dom¢:9p(j) € [B;]<¥;
3) (Uiedom<p (10(3)) N (Ujedomw ¢(])) = Q)
For (¢1,91), (2,12) € P, let:

(p1,%1) > (p2,%2)<=(dom ¢y C domepy A (Vi € dompy: p1(i) € 2(3))
A domep; C domeps A (Vi € domapy: 41 (5) C tha(i)))

(which intuitively means, as usual, that (¢2,12) extends (p1,11)). Observe that
two (¢1,%1), (p2,%2) in P are compatible, i.e. have a common extension, if and

only if
(U «@)n( U w)=0
i€dom ¢ jEdom 1pa

and
(U «@)n( U w)=0
i€dom @2 jEdom

In this case, a common extension is given by (¢1Upa, ¥1Uthe), where for any two
functions f, g, the function fUg is such that dom (fUg) = dom f U dom g, and for
2 in this set we have:

f(x) if z € dom f \ dom g;

(fug)(z) = ¢ g(z) if z € domg \ dom f;
f(x)Ug(z) if z € dom fNdomyg.
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First of all, we prove that P is c.c.c. Observe that if (¢1,1), (p2,%2) € P are such

that U;cqom o, £1(8) = Uicdom g, 92(1) a0d Ujcdomp, ¥107) = Ujedom g, ¥2(4);
then they are certainly compatible. Since for every (¢, 1) € P, the sets

U ¢1(7) and U P1(5)

i€dom @1 j€dom 1)y

are both in [w]<¥, and |[w]<¥ X [w]<¥| = w, in every S C P with |S| > w there must
be two distinct elements (1,%1), (p2,¥2) with Uiedom(p1 01(1) = Uiedom(p2 2 (1)

and Ujcqomy, Y1) = Ujcdomy, ¥2(J), so that S is not an antichain.
Foreveryiec I, j € J and n € w, let

D;, ={(p,¥) €P|iedomp A [p(i)| > n}

and
D} = {(p¥) € P|j € domyp A p(j)| > nk

we claim that both of them are dense in P. To prove the first fact (the second
one is symmetric), let (¢,%) be any element of P, and chose n distinct elements
miy . Mn € Ai \ (Ujedomy ¥(4)); then define ¢* to be the function having as
domain: dom ¢ U {i}, and such that ¢*(:') = ¢(¢’) for i’ € dom ¢ \ {7}, and

*(.)_{{ml,...,mn} if i ¢ dom ¢;
ZE p(@)U{mi,...,my} if i € domp.

It is clear that, in any case, (¢*,9) € P, (¢*,9) < (p,9), i € dom ¢* and |p*(i)| >
n.

Now, by MA(k), there exists a filter G on P which meets every D;,, and DY,
foriel,jeJandn € w. Forevery: €I and j € J, let

= J{e() | Gv: (0,9) € G) A i € dom}

and

= J{v0) | Ge: (v, 9) € G) A j € dom};

it is clear that A; C A; and B;. C Bj. Moreover, all the A} and B;. are infinite:
Indeed, for every n € w, there is an element (@,1)) € G N D;, [(¢ ) €GN D7 ]
Then i € dom @ and |@(i)| > n [j € dome) and [(5)| > n), and hence

47| = [[U{e0) | B¢: (0, ) € G) A i € domp}| > |3(i)] > n

[1Bjl = [ J{¥() | Ge: (0, %) € G) A j € domy}| > [4(j)| > n].

Finally, we prove that (UZe 7 A;) N (U i JB;-) = (). By contradiction, suppose
there are i € I, j € J and m € w such that m € A; N B;. Then m € (i) for some
(p1,¢1) € G, and m € 1Pa(j) for some (p2,12) € G. Let (¢,%) € G be a common

extension of (¢1,%7) and (goz,@b2) Then m € p1(i) C @(i) and m € P2(j) C w( ),
which is impossible because (@,%) € P. O
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Theorem 7. Let M be a countable transitive model of ZFC + MA(w1). Let, in
M, R be the set of all functions from w; to [w]*, and for every ¥ € K let Py be the
set of all functions g having as domain wy and such that, for every a € wy, g(a) is
a chain in ([w]“’, Q*) with the following properties:
a) ¥(a) € g(a);
b) card(g(a)) < wi.
Put P = llgegPy, and for p={pw}vea and ¢ = {qu}veqa let:

p > q<=YT € &:Va € wi:py(a) C qu(a).

Then, if G is P-generic over M, we have (w1)MIC = (w1)™ and in M[G] it holds
that for every ¥:wy, — [w]¥ there is a function U with domain wy such that:

Vo € wy: U(w) is a non-principal ultrafilter on w with ¥(«) € U(x)

and

VS C wq:dd: (<I> is a function A dom® = wq

A (Va € wi: ®@(a) € U(a)) A (U‘I’ ) (U d(a >=®>

a€S a€wi\S

Proof. Let us first argue in M. We notice the following two facts.

1) Any two elements p = {py}weg and ¢ = {qu}wecg of P are compatible if and
only if py(@) Uge(e) is a chain in ([w]*, D* ) for every ¥ € R and « € w;.

2) P is wo-closed. Indeed, if p? = {pg}\lfeﬁ is an element of P for every 8 € w1, and

pP > p7 for B < v, then let p = {py}wveg be defined by py(a) = Uﬂew1 pg(a)
for every ¥ € £ and a € w;. Clearly, ¥(a) € py(a) for ¥ € 8 and a € wy;
since an increasing union of chains is a chain, and a union of < w; many sets of
cardinality < w; has still cardinality < wy, we have that p € P, and of course
p < pP for every B € ws.

Now we leave M and carry out some considerations in V. Let G be P-generic

over M: From fact 2) it follows, by a well-known general result (see for example
[Kul, Corollary 6.15]), that

(w1) M1 = (wy)™.

Moreover, every subset of (w1)M[G] = (w1)M which is in M[G] is also in M (indeed,
we may identify subsets of (w;)™ with functions from (w;)M to 2, and apply [Kul,
Theorem 6.14]). Finally, we also have that every function from (w;)M[¢] = (w,)™
to [w]*, which is in M[G], is in M, as the same argument shows that no new subsets
of w are added by P.

The next arguments take place in M[G]. Suppose ¥ be any function from w;
to [w]¥: Then, as we have already seen, ¥ € K We may define a function F by:
F(a) = Upegpu(a), for every a € wy (where, for every p € P and ¥’ € &, pw
denotes the component of p with respect to ¥'). Since any two elements in G are
compatible, it is easily seen that every F(«) is a chain in ([w]“’, o* ) In particular,
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the intersection of any finite number of elements in F(«) is infinite, so that F(«) is
a filter base which may be extended to some U(«), a non-principal ultrafilter on w.
It is clear that ¥(a) € F(a) C U(a) for every a € wy (as ¥(a) € py(a) for every
p € P).

Now, if we are given a subset S of w1MI¢l = w;M which belongs to M[G], we
also have that S € M. Thus we may work in M and define:

Ds={p EIP" 3®: (@ is a function A dom ® = wqA
Va € wi: ®(a) € pu(a) A Ya € S:VB € wr \ S:@(a) N O(B) =0)}.
(1)
We prove that Dg is dense in P. Indeed, since M A(wq) holds, we have by a well-
known result (see, for example, [Frl, Chapter 1, §11]) that p > w1, hence also t > w;
[vD, Theorem 3.1]. Given any q € P, we have for every a € w; that, since gy () is
a chain in ([w]¥, D* ) with card(ge(e)) < wy < t, there is an A() € [w]* which
is C* of every element of gy (). Again, thanks to M A(w;), we have by Lemma
6 that there is a function A’ such that A'(a) € [A(a)]“ for every a € w;, and
Ala) N A'(B) = 0 for « € S and B € wy \ S. Then each A’(«) is still almost-
contained in every element of gy (<), so that defining py () = gg () U {A'(«)} for
every a € wi, and py/(a) = qu () for every ¥/ € 8 \ {¥} and o € wy, gives a
p € Dg with p <q.

To finish the proof, let us go back to M[G] and consider an arbitrary S C w:
Then there exists a p € G N Dg (observe that in M[G] the very same definition
labelled above as (1) gives rise to the very same set Dg obtained in M, because of the
properties of P). Let ® be such that ®(«) € pg(a) for a € wy and ®(a)NP(B) =0
for « € S and B € wy \ S. It turns out that ®(a) € py(a) C F(a) C U(a) for
every « € wy; thus @ is the function we were looking for. [J

In the statement and proof of the next corollary we will be working within M[G].

Corollary 8. In the generic extension M[G] of Theorem 7, for every Ta-topological
space (X, T) which is separable, first-countable and of cardinality wy, and every
compactification Y of D(wq), there are a topology o on X with 0 O 7, and a
continuous function f from a subspace of (X,0) toY, such that (X, o) is a normal,
hereditarily extremally disconnected, separable space and f cannot be extended to
any continuous f: (X,0) =Y.

Proof. Let E" be a dense countable subset of (X, 7)and E' = X \ E”. Index E' ina
one-to-one way as {Zq tacw, and E” as {y, }new; then, for every a € wq, fix a count-
able fundamental system of neighborhoods V, = {VJ*|m € w} for z, in (X, 1),
with V" S V' for m' < m”, and let N(e) = {{n € w|y, € V"}|m € w}.
Then N () is a countable chain (with respect to inclusion) in [w]*, and hence there
is ¥(a) € [w]¥ such that

VN € N(a): ¥(a) C* N. (%)

By Theorem 7, we may associate to every a € w; a non-principal ultrafilter U’ («)
on w, with ¥(a) € U'(a), in such a way that for every S C w there is a selection ®
of the function o — U'(e), with (U,eg () N (UQEM\S ®(a)) = 0. Letting, for

every a € wy, U(za) = {{yn € E" |[n € F}|F € U'() }, we have that condition 1)
of Proposition 1 is satisfied—and condition 2) is also satisfied because |E’| > |E"|.
Therefore, the above-mentioned proposition gives us a topology o on X = E' U E”
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such that (X, o) is normal, hereditary extremally disconnected, separable (because
E" is still dense in it), and has the required non-extension property. Moreover,
since the ultrafilters U’(«) are non-principal, (%) implies that NV («a) C U'(a)—
equivalently, V, C U(z,)—for every o € wy. This is easily seen to imply ¢ O 7. O

It is worth observing that Theorem 7 cannot be proved in ZFC. Actually, in
ZFC it is impossible to show the existence of even a single U, associating to every
element of wy a non-principal ultrafilter U («) on w, in such a way that for every

S C wy there is a selection ® of U such that (Uaes <I>(a)> N (Ua€w1\S <I>(a)) = (.

Actually, if we assume CH then we can prove that such an association o — U(«)
cannot exist, because of a combinatorial version of the Jones Lemma (see [Du,
Exercise 3 of §VIL3]).

On the other hand, o — U () with the above properties can be easily constructed
assuming the existence of a function A:w; — [w]¥ with the following property:
For every subset S of wi, one can find a function ¥:w; — [w]<% with (A(@) \
(@) N (A(B) \ ¥(B)) = 0 whenever @ € S and 8 € wy \ S. The existence of an
uncountable (Q-set Z in the reals implies the existence of such a function A. Indeed,
assume Z is a subset of the reals of size wy which is a QQ-set. It is well-known that
the subset Y = (Z x {0}) U D of the Niemytzki plane, where D is a countable
dense subset of the upper half of the plane, is normal when Z is a Q-set—=see [Ta,
Example F|. For every z € Z, let C, be a sequence of points of D converging to
(2,0). Define a topology 7 on Y by declaring all points of D isolated, while taking
{{(z,0)}UC,)\ F | F € [D]<*} as a base at the point (z,0). It is easy to see that
this topology is stronger than the original topology on Y, and that Y is 7-normal.
Take arbitrary bijections ¢ : wy — Z and 9 : D — w and define A(a) = 7(Cy(q))
for a € wy. One can easily verify, using 7-normality of Y, that A has the required

property.

3. SPACES WITH STRONG EXTENSION PROPERTIES.

In this final section, we want to give some examples of non-trivial spaces X
such that every continuous function from a subspace of X to a compact (T2-)space
may be continuously extended to the whole of X (in this case, “non-trivial” means
mainly “non-discrete”—or, in a stronger sense, “without isolated points”). This
will somehow show that the spaces constructed in the previous two sections are not
so common “in nature”.

We first point out a basic fact which will play a momentous role for the next
results, because it will allow us to check the extension property only for functions
defined on a closed subset of X.

Lemma 9. If X is a hereditarily normal, hereditarily extremally disconnected
space, then every continuous function from a subspace A of X to a compact (Ta-
)space Y may be continuously extended to A.

Proof. Use Taimanov theorem [En, Theorem 3.2.1] and the characterization of
hereditarily extremally disconnected spaces mentioned in the proof of Proposition 1
(separated subsets have disjoint closures). [J

Now we recall the notion of structural normality [CM, Definition 7.8]. A T;-
space X is said to be structurally normal if it is possible to associate to every
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z € X a fundamental system of open neighborhoods V, of z, in such a way that
V1,29 € X:VVL €V WV € Vyy: (1 € Vo A 22 ¢ Vi) = VinVa=0). (%)

Structural normality is clearly a hereditary property. Also, if X is structurally
normal and we associate to every closed subset C of X the collection W of all sets
of the form (J . Vi where, for every z € C, V; € V,, then it is easily seen that
each We is a fundamental system of open neighborhoods of C', and that

VCl, 02 closed in X: VWl € )/VC'1 :\VIWQ € WC2:
(ClﬁW2202ﬂW1:®:>W1ﬂW2:@).

(From the above property (which is, in fact, an alternative definition of structural
normality) it is easily seen that every structurally normal space is both (hereditar-
ily) collectionwise normal and strongly zero-dimensional.

We are going to prove now that for countable structurally normal spaces, a kind
of a very strong version of the Tietze-Urysohn extension theorem (where the unit
interval as a co-domain is replaced by an arbitrary topological space) holds.

Proposition 10. If X is a countable, structurally normal space, then every con-
tinuous function f from a closed subspace C' of X to a space Y may be extended to
a continuous function f: X — Y.

Proof. First of all, suppose to have associated to every x € X a fundamental system
of open neighborhoods V, of z, in such a way that condition (x) is satisfied. Since
the finite case is trivial, let us write X as {z¢|f € w}, with £ — z; one-to-one.
Also, we may clearly suppose C' # (. Let S = <¥2. We will define a subset T' of
S, a function \:T — w and a function €2 from T to the collection of open subsets
of X, such that the following conditions are satisfied (where, for every n € w, T,
stands for the set {s € T'|doms = n}):

1) To = {0}, zaq) € € and Q(() = X;

2) Vn € w:Thy1 ={s7(0)) s € T,} U {s™ (1)) |s € Tn A Q(s) # {zr(5)}};

3) Vn € w:Vs € T,: Vo € 2: (s7(1) € Triy1 = Q(s7(¢)) is a clopen neighbour-
hood of (s~ included in Q(s));

4) Yn € wiVs € Ty: [ Q(s) # {za)} = (A(s“(O)) = A(s) A A(s™(1) =
min{n € w‘acn € Q(s) \ {xx(s)}} A Q(s™(1)) € V‘”A(s“m) A (m)\(S"(l)) € X\
0= Q1) S X\ C) A Qs (0)) = 2(s) \ s7(1)))

Proceeding inductively, it is straightforward to check that a construction of 7',
A and €2 with the above properties may be carried out. As consequences of (1)-(4)
we have the following facts.
a) Vn € w:Vs € Tp: (Qs) = {zr} = (A(s7(0)) = A(s) A Q(s7(0)) =
Q(s)))-
This trivially follows from (2) and (3).
b) For every n € w, the family {Q(s)|s € T,,} is an open partition of X (in-
dexed in a one-to-one way), and {€(s) | s € T\, 41} is a refinement of {Q(s) | s € T,, }.
The proof is easily obtained by induction on n, using (1)—(4).
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c) For every £ € w, there is a (unique) ¢: w — 2, called the path related to £, such
that o[, € T and z, € Q(p[,) for every n € w. We also have that Q(¢[,) C Q(ely)
for n’ > n.

This is a consequence of (b), and of the more precise fact (which follows from (3))
that for every n € w and every s € T,,, the family {Q(s™(¢)) [t €2 A s7(¢) € Tp41}
is an open partition of (s).

d) If £ € w and ¢ is the path related to £, then for every s € T with A(s) = /£
we have that s = ¢[,,, where n = dom s.

Indeed, since , = x5 € €2(s) by (1) and (3), and since z, € Q(¢[,) by the
definition of path, we may apply (b) to conclude that Q(s) = Q(¢[,) and that
8= @ln.

e) The function A\: T'— w is onto.

To prove this fact, we will show by induction on n that:

Vn € w:VL < n:ds € Tp: A(s) = 4.

For n = 0 everything is trivial, because there is no £ < n. Suppose now that the
property holds for n = n, and let us prove it for n =n+ 1. Let £ <n + 1: Then if
£ < n, we have by the inductive hypothesis that £ = A(s) for some s € T;—hence,
using (2), (4) and (a), it follows that s~(0) € Tr11 and A(s™(0)) = A(s) = L.
Consider now the case £ = fi: By (b) we have in particular that there must exist
§ € Ty such that z; € Q(8). If A(8§) = 7 then A(§7(0)) = 7, too (apply again (2), (4)
and (a)), and we are done; otherwise, 2(8) # {zx(3)} (because £ — x; is one-to-one),
so that §°(1) € Ty, 41 and A(37(1)) = min {£ € w |z € Q(3) \ {zx(5)}} (due to (4)).
Observe that A(§7(1)) cannot be an ¢ < 72 (which would entail that z, € Q(57(1)) ):
Indeed, given an ¢ < 7, by the inductive hypothesis it must be A(s’) for some
s’ € Tr—whence, like before, £/ = A(s'~(0)). Therefore z» € Q(s'~(0)), which
implies by (b) that z, ¢ Q(87(1)) (as, of course, §~(1) # s'~(0)). Since z; € Q(8)
and x5 # z)(3) (because we have supposed 7 # A(5), and £ — x; is one-to-one), we
must necessarily have that A(§7(1)) = 7, and we are done.

f) Let £ € w and ¢ be the path related to £: Then there exists n € w such
that A(¢[,) = £. Moreover, putting n = min{n € w|A(p[,) = £}, we have that
¢(n) = 0 and M(¢[,) = £ for every n > n; and if n > 0, then we also have that
p(n—1)=1

Indeed, we know by (e) that there is s € T such that A(s) = £, so that by
(d): s = ¢[n, where n = doms, and hence A(p[,) = A(s) = £. If we further
put 7 = min{n € w|A(pl,) = £}, then let us define inductively s,, for m > 1 by:
s1 = @ln ~(0) and Sp41 = $m"(0). By (2), (4) and (a) we may easily prove by
induction that s,, € T and A(sy) = A(¢ls) = £ for every m > 1. Then we have by
(d) that smy = ©ldoms,, = ¢la+m for every m > 1. Therefore, A(p[,) = A(sp—n) = ¢
for every n > n—hence for every n > n, too; moreover, for n > n we also have
that ¢(n) = @lnt1 (n) = sp—mt+1(n) = 0. Finally, if 7 > 0 then we cannot have
¢(n — 1) = 0 (or, equivalently, p[; (n — 1) = 0), since otherwise we would obtain
by (4) and (a) that £ = M la) = AMelaz1 ~(0)) = Apls_1), contradicting the
minimality of 7.

Now we can define our extension f. For z € C, we put of course f(z) = f(x).
Suppose to have z; € X \ C, and let ¢ be the path related to /. Then, by
(f), MA@ ) is eventually equal to /. Since Ta(ple) = Tay) € C, there exists
7L = max {n € w | Tx(pln) € C}: Then we put f(:cé) = f(x)\(wﬁ)).
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To prove the continuity of f, suppose first to have an z; € X \ C: Let ¢ be
the path related to £, and put # = min{n € w|A(pl,) = £}. Then A > 0, and we
obtain by (f) that o(fi — 1) = 1 and (@ |,) = £ for every n > 7. Thus ¢ 5=
Pla-1 ~(1), and we have by (4) that Q(¢[s) C X \ C; we claim that f( (¢la)) =
{ f(z;)}—which clearly implies the continuity of f at z;. Indeed, we know that
f(:ce) = f(xk(q, n,)), where n* = max{n € w|zy,,) € C}; since, as we have

already observed, A (p[,) = ? for every n > n, we have that n* < n. Consider now
an arbitrary xp, € Q(¢[s), and let ¥ be the path associated to £: Then zy € Q(Y[5),
which implies by (d) that Q(¢¥[4) = Q(¢ls) and ¥[s= @[s—hence also ¥ [,= gofn
for every n < n. Now, for every n > n we have by (c) that Q¢ [,) C Q1 [a),
hence zy(y1,) € Q¥ Tn) € Q4 la) € X \ C; thus max{n € w|x>\(w yeC} =

max{n <n | TAW1a) € C} = max{n <n ‘ Tx(pln) € C} = n*. Therefore, f(.??g) =
F@r@r) = F(@aer,n) = flap)- i

Suppose now to have any z; € C, and let W be a neighborhood in Y of f(z;) =
f(z;). Again, consider the path ¢ related to ¢, and let

A =min{n € w|A(el,) :f} : (%)

In particular, we will have that Q(¢[4) is a clopen neighborhood of xx(,,) = ;.
By continuity of f, we know that there is a neighborhood V' of x; in X, such that
f(VNnC) C W; and we may further suppose that

VeV, and V CQ(pln).

We claim that f(V) C W. By our choice of V, we only have to show that f(z) € W
whenever x € V' \ C. Indeed, suppose zy« € V' \ C, let ¢ be the path related to £*
and put

n* =max{n € w|xyy,) € C}: (IT)

Putting A\(¢]n+) = £¢, we have by our definition of f that

f(we) = flap).

Since z4» € V C Q(¢l4), and also z4» € Q(¢]4) (because 9 is the path related to
£*), we have by (b) that

Yla= @la -
This implies that zy(y1,) = Taer,) = T; € C, and hence (taking (II) into account):

n*>n

Let n be the path associated to £*: Then A(t[,+) = £* implies by (d) that 9 [,-=
1ln+—hence also
Yipn=nl, for n <n*.

Thus, putting n¥ = min{n € w|A(¥[,) = £}, we will have as well that n¥f =
min{n € w | A(n[,) = £*}; then it follows from (f) that A(n[,) = £* for every n > n.
Of course, we will have that nf < n*.
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Now, if ## = 7, then f(zp) = f(zp) = f(z;) € W, and we are done; thus, we
may suppose £F #£ /. Notice that this implies:

i < nt ()

and
Ty & Qlps).- (A)

Indeed, to prove ('), suppose by contradiction # > n¥. Then, as we have already
observed, it follows that A(n[z) = £%. On the other hand, since # < n*, we have
that ¥[a= nla, so that A(¢[5) = £%. But this is impossible because 1[;,= ©[4 and
hence A(4[7) = A(pla) = £ by ().

Suppose now that (A) fails, i.e. x; € Q(n[,:): Since z; € Q(p[,¢) (because ¢

A,

is the path of £), we have by (b) that ¢[,:= n[,s+—hence also ¢[,1= ¥ [,:. But
the definition of 7 (see (%)) implies by (f) that A(¢|,) = £ for every n > @; since
n! > i by ('), we obtain that A(¥ ,;1) = M@ [,.:) = £, while A(¢],,:) = &% by
definition of nf. A contradiction.

Now, since nf > 7 implies in particular that n¥ > 0, and n! = min{n €
w|A(nl,) = £}, we have by (f) that n(n* — 1) = 1—hence also 9 (nf — 1) = 1,
because nf —1 < nf < n* and 7<= Y ,+. By (4), we obtain that Q(¢[,:) =

Q (zp[nﬁ_l“(l)) € Vm}‘(‘“nﬂ) = Vz,,- Since ¢ is the path of £*, z,» must belong to

Q¢ ],t); but zg« € V, too, by its initial choice. It follows that V N Q¢ [,:) # 0,
which implies (as V' € V,, and Q(¢ [n4) € Vg, ) that either z; € Q(¢ [1) or
xgs € V—cf. property (x) in the definition of structural normality. Since the first
relation is in contrast with (A), we have that z, € V—hence also s € VN C, by
our definitions of £f and n*. Therefore, f(zp) = f(zp) € F(VNC)CW. O

Corollary 11. If X is a structurally normal, hereditarily extremally disconnected,
hereditarily separable space, then every continuous function f from a subspace of X
to a compact (Ty-)space Y may be extended to a continuous f: X — Y.

Proof. Let f: M — Y, with M C X, be continuous: Since M is hereditarily normal
and hereditarily extremally disconnected, by Lemma 9 we may extend f to a con-
tinuous f*: M — Y. Fix a countable dense subset C' of M and a countable dense
subset D of X \ M: then C is closed in X* = CU D and X* is a countable, struc-
turally normal space. By Proposition 10, there must exist a continuous extension
ft: X* = Y of f*¢; and since X* is obviously dense in X, we may apply Lemma 9
again to get a continuous f : X — Y which extends f!. Thus, it only remains to
show that f is an extension of f: This will immediately follow if we can prove that
f 7= [*. Indeed, since f I37 and f* are both continuous, and they coincide on the
dense subset C of M, they must coincide also on the whole of M. O

We will now give some examples of spaces satisfying the hypotheses on X, in
the statement of the above result. Besides countable discrete spaces, the simplest
non-trivial example seems to be a subspace of fw, given by w plus a point p of w*.
This space is trivially seen to be structurally normal and (hereditarily) extremally
disconnected.

In [CM], after Definition 7.8, there is an example of a countable, structurally
normal, hereditarily extremally disconnected space X with no isolated points. The
construction of this space is performed in the following way. One takes as X the
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set <*w; then one fixes a non-principal ultrafilter ¢ on w and defines a subset A of
X to be open if and only if, for every s € A, the set {n € w|s™(n) € A} belongs to
U. Since the topological properties of X are just stated in [CM], without any real
proof, we will provide it here for what concerns structural normality and hereditary
extremal disconnectedness.

It is easily seen that set-theoretic inclusion, when restricted to X, gives it a tree
structure. We will say that a subset M of X is tree-conver if for any two s’,s” € X
with s’ C s, we have that

Vm € w: (doms’ <m < doms" = s",,€ M).
For every s € X, we will put

Vs = {A C X | A is open and tree-convex A s = min A with respect

to set-theoretic inclusion}.

Proposition 12. For every s € X, Vs is a fundamental system of open neighbor-
hoods for s, and the association s — Vs salisfies property (x) in the definition of
structural normality.

Proof. Let § € X, and Q be an open set containing §. By our definition of the
topology on X, and applying the axiom of choice, we have that there must exist a
function U: €2 — U such that:

Vs € Q:{s™(n) [neU(s)} C Q.
Then define by induction the sets A, C €2 by:
Ao ={8}; Apii={s"(n)|s€Ad, AN nelU(s)}

It is easily seen that A = J,,c,, Am is open, is included in ©Q, and that § is the
minimum of A with respect to set-theoretic inclusion. To prove tree-convexity, let
s',s" € Awith s’ Cs”. Put F = {n € w|doms’ <n <doms"} and suppose to-
wards a contradiction that F' \ {n < doms"|s"[,€ A} # 0: Then we may consider
the maximum 7 of this set. Since < dom s”, we have that 7 + 1 € F' and hence
s"la+1€ A. Also, s"[5741 cannot coincide with § (because § has minimum domain in
A, while dom (s"[741) =1+ 1> n > doms’), hence s[5 +1€ A for some m > 0.
Thus, by the definition of the sets A,,, we have that s”[z= (s"[741)[2€ Am_1 C A,
contradicting the definition of 7.

Now we prove that s — )V, witnesses the structural normality of X. Suppose
Sp, S1 € X, Ao € Vso and A; € Vsli If AO N A; 75 @, let s* € AoﬂAl. Then
for every ¢ € 2, since s, = min A,, we have that s, C s*, i.e. 5, = s*[,, where
n, = doms,. Let i € 2 be such that n; = min{ng,n1}: We have that s1_;[,,=
(3*[n1_£) ln,= $*[n,= Si, whence s; C s1_;. Since s;,s* € A; and s; C s1-; C s,
s1—; must belong to A; because of tree-convexity. Therefore, we have proved that
AgNA; #0 = (s1 € Ag V sg € A1), which means that condition (*) in the
definition of structural normality is satisfied. [

Since we have chosen the ultrafilter U to be non-principal, X is clearly T1—hence
by the above proposition it is structurally normal. Now we are going to prove hered-
itary extremal disconnectedness of X. Since structural normality implies hereditary
normality, by the second remark after Proposition 1 it will be sufficient to show
extremal disconnectedness.
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Lemma 13. Let M be any subset of X, and 3 € M \ M. Then {n € w|35"(n) €
M} el.

Proof. Towards a contradiction, suppose F = {n € w|3"~(n) € M} ¢ U: Then
w\FelU. Let A= (X \ M)U{38}: We claim that A is open, and this will lead to
a contradiction as § cannot have any neighborhood disjoint from M.

To prove that A is open, we have to show that

Vse A:{new|s™(n) € A} e U. ()

Actually, given any s € A, we have that {n € w|s™(n) € X \ M} € U—which
clearly implies (f). Indeed, if s # §, then s belongs to X \ M, which is open; and
if s = §, then the above relation follows from the fact that w \ F e 4. O

Proposition 14. X is extremally disconnected.

Proof. Let A be openin X and 8 € A. If 5 € A, then {n € w|5(n) € A} e U—
hence {n € w|3~(n) € A} € U, too. And if 3 € A\ A, then we can clearly apply
the previous lemma to get the same result. [

4. OPEN QUESTIONS.

We do not know whether structural normality can be weakened to hereditary
normality in Corollary 11.

Question 15. Assume that X is a hereditarily normal, hereditarily separable,
hereditarily extremally disconnected space, A is a subspace of X, K is a compact
space and f : A — K is a continuous function. Can then [ be extended to a
continuous function f : X — K?

Even the following concrete case of the previous question seems interesting.

Question 16. Assume that X is a countable, hereditarily extremally disconnected,
regular space, A a subspace of X, K a compact space and f : A — K a continuous
function. Can then f be extended to a continuous function f : X — K ¥

We do not know whether the requirement of structural normality of X can be
omitted in Proposition 10.

Question 17. Assume that X is a countable reqular space, A is a closed subspace
of X, Y is an arbitrary space and f : A — 'Y is a continuous function. Can then f
be extended to a continuous function f : X — Y ¥?

Remark. Since a countable regular space is (hereditarily) normal, the space X in
both Questions 16 and 17 is (hereditarily) normal. Of course, if we had not assumed
normality of X, then the answer to both questions would have been negative, in the
first case by [CM, Proposition 7.4 or Theorem 7.5], and in the second case because
if Cy, C are closed disjoint subsets of X which cannot be separated by open sets,
then f: CoUCy — {0, 1} defined by f(z) = for € C, cannot be extended to any
continuous function f: X — {0,1}.

An example of a countable, hereditarily extremally disconnected Hausdorff space
which is not (semi)regular will be given in the end of this manuscript.
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Question 18. In ZFC, does there exist a separable, hereditarily normal, heredi-
tarily extremally disconnected space X such that some continuous function f from
a subset of X to a compact space Y cannot be continuously extended to a function
f:X—oVY?

Problem 19. LetY be a space with the following property: For every hereditarily
normal, hereditarily extremally disconnected space X, each subspace A of X and
any continuous function f : A =Y, there exists a continuous function f : X —'Y
extending f. Must then' Y be metrizable?

By Proposition 7.7 from [CM], Y must be compact. A positive answer to Problem
19 combined with Theorem 7.5 from [CM] would provide a nice characterization of
compact metric spaces in terms of extensions of continuous functions.

Recall that a space X is said to be semireqular if each of its points has a fun-
damental system of neighbourhoods consisting of open domains, i.e. sets which
coincide with the interior of their closure.

We finish this paper with the example promised in the remark after Question
17.

Example 20. Let {S, |n € w} be a faithfully indexed family of pairwise disjoint
infinite subsets of w, and let each U,, be a non-principal ultrafilter on w such that
Sn € U,. Fix another non-principal ultrafilter ¢ on w and observe that

Uo ={SCw|{new|Selh,} U}

is a non-principal ultrafilter on w. Define X = wU{z | {€wU{oo}}, where £ — x4
is one-to-one map and w N {zy | {ewU{oo}} = 0. Endow X with the topology
making every point n € w isolated, while each z, has {{.’Ee} UM | M e Z/{e} as its
fundamental system of (open) neighbourhoods. Then X is a (countable) hereditarily
extremally disconnected Hausdorff space, which is not semireqular.

Proof. Let us check relevant properties of X.

X is Hausdorff. If £ " € w are distinct, then {zy} U Sy and {zp} U Sy are
disjoint neighbourhoods of x4 and x4, respectively. To separate an z, with £ € w
from z,, simply observe that w \ Sy belongs to Uy, because

{£’€w|w\SgEL{g:}:w\{€}€U

(recall that we have chosen U to be non-principal).

X is hereditarily extremally disconnected. Let A, B be subsets of X with ANB =
AN B = (. By contradiction, suppose that y € AN B. Then y ¢ A and y ¢ B, so
that y = x, for some £ € wU {oo} and y € (ANw) N (BNw) (this is an obvious
consequence of the way we have defined the topology on X). But z, € A N w implies
that ANw € U, (otherwise {z,} U (w \ A) would be a neighbourhood of z, disjoint
from A Nw), and analogously z, € B N w implies that BNw € Uy. Since A and B
are disjoint, this is a contradiction.

X is not semiregular. Since a semiregular hereditarily extremally disconnected
space is regular (see, for example, [En, Exercise 6.3.18]), it suffices to show that
X is not regular. The set C' = {z¢|¢ € w} is clearly closed in X. We prove that
every neighbourhood of z,, contains some element of C in its closure. Indeed, let
{Zo} UM be an arbitrary (basic) neighbourhood of z., with M € U,. Then
L={{ew|Mel} € U. Hence L # 0, and 2y € M C {zo0c} UM for every
te L. O
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