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Let p be a prime and let O be a complete discrete valuation ring with an alge-
braically closed residue field k of characteristic p. Let G be finite group and b be
a block of G with maximal (G, b)-subpair (P, ep) where b is a block idempotent of
OG. For any subgroup @ of P, let (), eq) be a unique (G, b)-subpair contained in
(P, ep). Following Kessar, Linckelmann and Robinson [4], we denote by Fp.,.)(G,b)
the category whose objects are subgroups of P and for ), R < P, whose set of mor-
phisms from ) to R are the set of group homomorphisms ¢ : ) — R such that
there exists * € G such that *(Q,eq) C (R,er) and p(u) = zux™" for all u € Q.
We call Fpe,)(G,b) the Brauer category of b. Let Bg(b) be the Brauer category
of b in the sense of Thévenaz [10], § 47. The categories F(p,,)(G,b) and B¢(b) are
equivalent. Let R be a normal subgroup of P such that Ng(P) C Ng(R) and ¢
be the Brauer correspondent of b in Ng(R), that is, ¢ is a unique block of Ng(R)
such that Brp(c) = Brp(b) where Brp is the Brauer homomorphism from (OG)”
onto kCgq(P). Set N = Ng(R). The notations R, ¢ and N are fixed. Thus b = ¢
and (P, ep) is a maximal (IV, ¢)-subpair. The arguments in the proof of Theorem in
Kessar-Linckelmann [5] imply the following.

Theorem 1 Assume that G is p-solvable. With the above notations, suppose that
Fpep)(G,0) = Fipep)(N,c). Then there is an indecomposable OGb-ON c-bimodule
M which satisfies the following.
(i) M and its O-dual M* induce a Morita equivalence between OGb and ONc.
(ii)) As an O(G x N)-module M has a vertex AP and an endo-permutation
O(AP)- module as a source where AP = {(u,u) | u € P}.

Let Hp, (G, b) be the cohomology ring of b in the sense of Linckelmann[6], [7],
that is, H(p, (G, b) is the subring of H*(P, k) consisting of ¢ € H*(P, k) satisfying
resg ¢ = 9resg ( for all Q < P and, for all g € Ng(Q, eq). We prove the following.

Theorem 2 Assume that G is p-solvable. With the above notations, z'fHE"P’eP)(G, b) =
H? (N, c), then f(pﬁp)(G, b) = f(pﬁp)(N, c).
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We prove Theorem 1 using the following.

Lemma 1 (Harris-Linckelmann [3], Lemma 4.2) Assume that G is p- solvable. For
any p-subgroup Q of G, we have Oy (Ng(Q)) = Oy (G)NNg(Q) = Oy (G)NCe(Q) =
Oy (Ca(Q))-

Proposition 1 (Harris-Linckelmann [2], Proposition 3.1 (iii)) Let G be a p-solvable
group and b be a block of G such that b covers a G-invariant block of O, (G). Then b
is of principal type, that is, for any p-subgroup @ of G, Brg(b) is a block of kC(Q).
O

Proposition 2 (Fong[1]; Puig[9]) Let G be a p-solvable group and b be a block of G
with defect group P. Then the following holds.

(i) There is a subgroup H of G and an H-invariant block e of Oy (H) such that
Oy (G)P C H and OGb = Ind$(OHe) as interior G-algebras.

(ii) P is a Sylow p-subgroup of H and P is a defect group of e as a block of H.
Moreover let (P,e’p) be a mazimal (H,e)-subpair and let ep = Trgfl((i))(e’P). Then
(P,ep) is a mazimal (G,b)-subpair.

Note that in the above proposition Fpe,)(G,b) = Fper,)(H,e) since OGb =
Ind$ (O He) as interior G-algebras.

Proposition 3 ([5], Proposition 6) With the notations in the above proposition, let
R be a subgroup of P such that Ng(P) C Ng(R). Denote by c the Brauer corre-
spondent of b in Ng(R), and by f the Brauer correspondent of e in Ny(R). Then f
is an Ny (R)-invariant block of Oy (N (R)) and ONg(R)c = Ind%i((?)(ONH(R)f)
as interior Ng(R)-algebras.

The following is shown in the proof of Theorem in [5].

Theorem 3 (Kessar-Linckelmann) Let G be a p-solvable group and b be a block of
G with defect group P. Let R be a subgroup of P such that Ng(P) C Ng(R) and
let ¢ be the Brauer correspondent of b in N where we set N = Ng(R). If b covers a
G-invariant block of Oy (G) and if G = Oy (G)N, then there is an indecomposable
OGbL-ONc-bimodule M which satisfies the following.

(i) M and its O-dual M* induce a Morita equivalence between OGb and ONc.

(ii)) As an O(G x N)-module M has a vertex AP and an endo-permutation
O(AP )- module as a source.

Proof of Theorem 1. We prove by induction on |G|. Let H, e, € and ep be
as in Proposition 2, and let f be as in Proposition 3. We may assume that ep’s
x

in Theorem 1 and Proposition 2 are equal by replacing H, e, ¢, and f, by H*, e”,
(e/)* and f* respectively for some x € Ng(P) if necessary. By Proposition 2,

Fpep) (G, b) = Fper)(H,e).
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By Proposition 3, (P, €/) is a maximal (Ny(R), f)-subpair and

Fpep)(N,¢) = Fper) (Nu(R), f).

So by the assumption we have Fper)(H,e) = F(pe,)(Nu(R), f). Since OGb =
Ind$ (O He) as interior G-algebras, the OGb-O He-bimodule bOGe = OGe and the
OHe-OGb- bimodule eOG induce a Morita equivalence between OGb and OHe.
Similarly the ONc-ONg(R)f-bimodule ON f and the ONg(R)f-ONc-bimodule
fON induce a Morita equivalence between ONc¢ and ONg(R)f. Suppose that
H < G. By the induction hypothesis for H and e, there is an indecomposable O H e-
ONg(R) f- bimodule My such that My and Mg induce a Morita equivalence between
OHe and ONg(R)f, and that My as an O(H x Ny (R))-module has a vertex AP and
an endo-permutation O(AP)-module as a source. Set M = bOG @one Mo Q@on, (r)f
ONc = ME*N. Then M satisfies (i) and (ii) in Theorem 1. Therefore we may
assume that H = G. Then b = e.

Let Y = Oy ,(G). Then b is a G-invariant block of Y because Y/O,(G) is a
p-group. Furthermore we have Y = Oy (G)(Y N P). Set Q = PNY. Then Q is
a defect group of b as a block of Y. Now since G is constrained, Cy(Q) = Cx(Q).
Therefore we see that (Q), eg) is a maximal (Y, b)-subpair. By the Frattini argument
and the assumption that Fp.,.)(G,b) = F(pep)(IV, c),

G = Ng(Q,eq)Y € Ny(Q)C(Q)Y C NY C NOy(G).
So we have G = NO,(G). This and Theorem 3 complete the proof.

Proof of Theorem 2. We prove by induction on |G|. Let H, e, € and ep be
as in Proposition 2, and let f be as in Proposition 3. We may assume that ep’s
in Theorem 2 and Proposition 2 are equal as in the proof of Theorem 1. Since

Fpep)(G,0) = Fper,)(H, ) and Fpep) (N, ¢) = Fpe,)(Nu(R), f) we have
HEKP7€P)(G7 b) = H(*P,e;))(H7 6)7

H;P,ep)(Nv C) = H(*P,egj)(NH<R>7 f)
From the assumption, we have H{p, )(H, e) = H?P,e;g)(NH(R)>f)- Suppose that

H < @. Then by the induction hypo‘éghesis, Fpey)(H,e) = Fpe,)(Nu(R), f), and
hence F(pepy(G,0) = F(pep) (N, c). Therefore we may assume that H = G. Then b
covers a G-invariant block of O,/(G) and P is a Sylow p-subgroup of G. Note that
the element b € OO0, (G).

From Proposition 1, b is of principal type. On the other hand, by Lemma 1,
Brg(b) is an N-invariant block idempotent of kO, (N) and c is a lifting of Brg(b)
to ON. So by Proposition 1, ¢ is also of principal type. So we may assume that b
is a principal block. Therefore by a theorem of Mislin [8], we obtain F(pe,)(G,b) =

Fpep)(N,c). This completes the proof.
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