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Let p be a prime and let O be a complete discrete valuation ring with an alge-
braically closed residue field k of characteristic p. Let G be finite group and b be
a block of G with maximal (G, b)-subpair (P, eP ) where b is a block idempotent of
OG. For any subgroup Q of P , let (Q, eQ) be a unique (G, b)-subpair contained in
(P, eP ). Following Kessar, Linckelmann and Robinson [4], we denote by F(P,eP )(G, b)
the category whose objects are subgroups of P and for Q, R ≤ P , whose set of mor-
phisms from Q to R are the set of group homomorphisms ϕ : Q → R such that
there exists x ∈ G such that x(Q, eQ) ⊆ (R, eR) and ϕ(u) = xux−1 for all u ∈ Q.
We call F(P,eP )(G, b) the Brauer category of b. Let BG(b) be the Brauer category
of b in the sense of Thévenaz [10], § 47. The categories F(P,eP )(G, b) and BG(b) are
equivalent. Let R be a normal subgroup of P such that NG(P ) ⊆ NG(R) and c
be the Brauer correspondent of b in NG(R), that is, c is a unique block of NG(R)
such that BrP (c) = BrP (b) where BrP is the Brauer homomorphism from (OG)P

onto kCG(P ). Set N = NG(R). The notations R, c and N are fixed. Thus b = cG

and (P, eP ) is a maximal (N, c)-subpair. The arguments in the proof of Theorem in
Kessar-Linckelmann [5] imply the following.

Theorem 1 Assume that G is p-solvable. With the above notations, suppose that
F(P,eP )(G, b) = F(P,eP )(N, c). Then there is an indecomposable OGb-ONc-bimodule
M which satisfies the following.

(i) M and its O-dual M∗ induce a Morita equivalence between OGb and ONc.
(ii) As an O(G × N)-module M has a vertex ∆P and an endo-permutation

O(∆P )- module as a source where ∆P = {(u, u) | u ∈ P}.

Let H∗
(P,eP )(G, b) be the cohomology ring of b in the sense of Linckelmann[6], [7],

that is, H∗
(P,eP )(G, b) is the subring of H∗(P, k) consisting of ζ ∈ H∗(P, k) satisfying

resQ ζ = gresQ ζ for all Q ≤ P and, for all g ∈ NG(Q, eQ). We prove the following.

Theorem 2 Assume that G is p-solvable. With the above notations, if H∗
(P,eP )(G, b) =

H∗
(P,eP )(N, c), then F(P,eP )(G, b) = F(P,eP )(N, c).
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We prove Theorem 1 using the following.

Lemma 1 (Harris-Linckelmann [3], Lemma 4.2) Assume that G is p- solvable. For
any p-subgroup Q of G, we have Op′(NG(Q)) = Op′(G)∩NG(Q) = Op′(G)∩CG(Q) =
Op′(CG(Q)).

Proposition 1 (Harris-Linckelmann [2], Proposition 3.1 (iii)) Let G be a p-solvable
group and b be a block of G such that b covers a G-invariant block of Op′(G). Then b
is of principal type, that is, for any p-subgroup Q of G, BrQ(b) is a block of kCG(Q).
　

Proposition 2 (Fong[1]; Puig[9]) Let G be a p-solvable group and b be a block of G
with defect group P . Then the following holds.

(i) There is a subgroup H of G and an H-invariant block e of Op′(H) such that
Op′(G)P ⊆ H and OGb ∼= IndG

H(OHe) as interior G-algebras.
(ii) P is a Sylow p-subgroup of H and P is a defect group of e as a block of H.

Moreover let (P, e′P ) be a maximal (H, e)-subpair and let eP = Tr
CG(P )
CH(P )(e

′
P ). Then

(P, eP ) is a maximal (G, b)-subpair.

Note that in the above proposition F(P,eP )(G, b) = F(P,e′P )(H, e) since OGb ∼=
IndG

H(OHe) as interior G-algebras.

Proposition 3 ([5], Proposition 6) With the notations in the above proposition, let
R be a subgroup of P such that NG(P ) ⊆ NG(R). Denote by c the Brauer corre-
spondent of b in NG(R), and by f the Brauer correspondent of e in NH(R). Then f

is an NH(R)-invariant block of Op′(NH(R)) and ONG(R)c ∼= Ind
NG(R)
NH(R)(ONH(R)f)

as interior NG(R)-algebras.

The following is shown in the proof of Theorem in [5].

Theorem 3 (Kessar-Linckelmann) Let G be a p-solvable group and b be a block of
G with defect group P . Let R be a subgroup of P such that NG(P ) ⊆ NG(R) and
let c be the Brauer correspondent of b in N where we set N = NG(R). If b covers a
G-invariant block of Op′(G) and if G = Op′(G)N , then there is an indecomposable
OGb-ONc-bimodule M which satisfies the following.

(i) M and its O-dual M∗ induce a Morita equivalence between OGb and ONc.
(ii) As an O(G × N)-module M has a vertex ∆P and an endo-permutation

O(∆P )- module as a source.

Proof of Theorem 1. We prove by induction on |G|. Let H, e, e′P and eP be
as in Proposition 2, and let f be as in Proposition 3. We may assume that eP ’s
in Theorem 1 and Proposition 2 are equal by replacing H, e, e′P and f , by Hx, ex,
(e′P )x and fx respectively for some x ∈ NG(P ) if necessary. By Proposition 2,

F(P,eP )(G, b) = F(P,e′P )(H, e).
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By Proposition 3, (P, e′P ) is a maximal (NH(R), f)-subpair and

F(P,eP )(N, c) = F(P,e′P )(NH(R), f).

So by the assumption we have F(P,e′P )(H, e) = F(P,e′P )(NH(R), f). Since OGb ∼=
IndG

H(OHe) as interior G-algebras, the OGb-OHe-bimodule bOGe = OGe and the
OHe-OGb- bimodule eOG induce a Morita equivalence between OGb and OHe.
Similarly the ONc-ONH(R)f -bimodule ONf and the ONH(R)f -ONc-bimodule
fON induce a Morita equivalence between ONc and ONH(R)f . Suppose that
H < G. By the induction hypothesis for H and e, there is an indecomposable OHe-
ONH(R)f - bimodule M0 such that M0 and M∗

0 induce a Morita equivalence between
OHe andONH(R)f , and that M0 as anO(H×NH(R))-module has a vertex ∆P and
an endo-permutation O(∆P )-module as a source. Set M = bOG⊗OHe M0⊗ONH(R)f

ONc ∼= MG×N
0 . Then M satisfies (i) and (ii) in Theorem 1. Therefore we may

assume that H = G. Then b = e.
Let Y = Op′,p(G). Then b is a G-invariant block of Y because Y/Op′(G) is a

p-group. Furthermore we have Y = Op′(G)(Y ∩ P ). Set Q = P ∩ Y . Then Q is
a defect group of b as a block of Y . Now since G is constrained, CY (Q) = CG(Q).
Therefore we see that (Q, eQ) is a maximal (Y, b)-subpair. By the Frattini argument
and the assumption that F(P,eP )(G, b) = F(P,eP )(N, c),

G = NG(Q, eQ)Y ⊆ NN(Q)CG(Q)Y ⊆ NY ⊆ NOp′(G).

So we have G = NOp′(G). This and Theorem 3 complete the proof.

Proof of Theorem 2. We prove by induction on |G|. Let H, e, e′P and eP be
as in Proposition 2, and let f be as in Proposition 3. We may assume that eP ’s
in Theorem 2 and Proposition 2 are equal as in the proof of Theorem 1. Since
F(P,eP )(G, b) = F(P,e′P )(H, e) and F(P,eP )(N, c) = F(P,e′P )(NH(R), f) we have

H∗
(P,eP )(G, b) = H∗

(P,e′P )(H, e),

H∗
(P,eP )(N, c) = H∗

(P,e′P )(NH(R), f).

From the assumption, we have H∗
(P,e′P )(H, e) = H∗

(P,e′P )(NH(R), f). Suppose that

H < G. Then by the induction hypothesis, F(P,e′P )(H, e) = F(P,e′P )(NH(R), f), and
hence F(P,eP )(G, b) = F(P,eP )(N, c). Therefore we may assume that H = G. Then b
covers a G-invariant block of Op′(G) and P is a Sylow p-subgroup of G. Note that
the element b ∈ OOp′(G).

From Proposition 1, b is of principal type. On the other hand, by Lemma 1,
BrR(b) is an N -invariant block idempotent of kOp′(N) and c is a lifting of BrR(b)
to ON . So by Proposition 1, c is also of principal type. So we may assume that b
is a principal block. Therefore by a theorem of Mislin [8], we obtain F(P,eP )(G, b) =
F(P,eP )(N, c). This completes the proof.
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