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INTRODUCTION

Let kG be the group algebra of a finite group G over an algebraically closed field
k of characteristic p > 0 . In 1990 [9] G.Mislin proved the following remarkable
theorem.

Theorem (Mislin). Let H be a subgroup of G. Then the restriction map in mod-p
cohomology res$, : H*(G, k) — H*(H, k) is an isomorphism if and only if H controls
strong p-fusion in G.

"If” part in the theorem has long been known to be true. For ”Only if’part
Mislin’s proof uses deep results from algebraic topology. In 2001 [11] V.P.Snaith
gave an alternating proof of Mislin’s theorem which uses also topological results.
In [10] G.R.Robinson remarked that Mislin’s theorem can be obtained if one could
prove the non-vanishing of cohomology of certain types of trivial source kG-modules.

Isomorphism classes of indecomposable trivial source kG-modules are parametral-
ized as follows. Let P be a p-subgroup of G and S be a simple kNg(P)-module.
Let Mﬁg(P) be a projective cover of S as kNg(P)/P-module. Inflating Mgg(P) to
kNg(P) and taking its Green correspondent, we obtain an indecomposable trivial
source module Mlg’: ¢ with vertex P. And each indecomposable trivial source module
is obtained in this way.

P.Symonds in [13] proved the following result from which Mislin’s theorem is
obtained following Robinson’s remark.

Theorem (Symonds). In the notations above, H*(G, Mzg,s) # 0 if and only if
Cq(P) acts trivially on S.

A proof of the above theorem given by P.Symonds needs also topological methods.
My aim in this talk is to give an algebraic proof of the theorem of P.Symonds.

A Hida [8] also obtained an algebraic proof of the above Symonds’theorem and
explained his idea in his talk at this meeting. A very elegant proof !!

In my lecture I first introduced the idea of Robinson to find an algebraic proof
of Mislin’s theorem and how his idea relates Symonds’theorem. This is included in
section 1 in this note. And then I discussed the theorem of Symonds. In the lecture
I only gave an outline of my proof of the theorem. I shall give my proof in detail in

this note.
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”Only if” part of the theorem has been essentially proved by Benson, Carlson and
Robinson in [5]. In section 2 in this note we shall give a proof of ”Only if part”
following arguments by them.

For ”If’part we first reduce the problem to some p-local subgroup. This is done
in section 3. Our p-local subgroup is a normalizer of some elementary abelian p-
group. Then we use the idea of Symonds in [12] to find a nonzero cohomology
element. There he made use of the Lyndon-Hochschild-Serre spectral sequence and
some result on the action of Aut(F) on the cohomology algebra H*(FE, k), where E
is an elementary abelian p-group. He needed also a result of Duflot [6] on the depth
of cohomology algebras of groups with central elementary abelian groups. For these
results there has been given algebraic proofs (see for example [2],[4] and [7]) and we
believe that our proof of the theorem is an algebraic one.

1. ROBINSON’S IDEA

In this section let H be a subgroup of G' and assume that res% : H*(G, k) —
H*(H, k) is an isomorphsm. We first remark the following.

Lemma 1.1. H contains a Sylow p-subgroup of G.

Proof. Consider an H-injective hull of kg; 0 — kg ER ky 19— L — 0. We obtain
the following long exact sequence

— H™(G,k) L5 (G, ky 19) — H(G, L) — H"™ (G, k) L5 H"™ (G, ky 1) —

Identify H"(G, ky 1¢) with H"(H, k) by Eckmann-Shapiro. Then it follows that
the map f. coincides with the restriction map res$. By our assumption we have
H™(G,L) for n 2 0. By a theorem of Benson- Carlson-Robinson (Theorem 2.4
[5]), H*(G, L) = 0 for all n, where H" is Tate’s cohomology. In particular, resS :
HY(G,kg) — H '(H, kg) is an isomorphism. Any non zero element in H~'(G, k)
represents the almost split sequence terminating at kg and it is well known that the
sequence does not split as a sequence of kH-modules if and only if H contains a

Sylow p-subgroup of GG. Thus the lemma is proved. O

Assume that H contains a Sylow p-subgroup of G and H does not control p-fusion.
Then there exists a p-subgroup P of H such that Ng(P) 2 Ca(P)Ng(P). Choose P
maximal with this property, then Cq(P) = Z(P)x Oy (Cq(P)) and Cg(P)Ny(P)/P
is a strongly p-embedded subgroup of Ng(P)/P. Set C = Cg(P)Ny(P). Then
ko TNeWP =k @ M for some kNg(P)-module M. Each indecomposable summand
of M has the form MpS") with Co(P) € KerS. (kg 19) Ingy= knypy 1760
QU = ke TN U’ = kg @ M @ U’ for some kNg(P)-modules U, U'. By a
theorem of Burry-Carlson, ky 19= ke @& M§ ¢ @V with Ker S D Cg(P).

Now Symonds’theorem implies that H(G, M]g’:s) # 0 and we can conclude that
H*(H,k) = H*(G,kg 1) 2 H*(G,k) and the "only if’ part of Mislin’s theorem
follows.
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2. PrROOF OF "ONLY IF” PART

Let P be a p-subgroup of G and S be a simple kNg(P)-module. And let Mgs
be an indecomposable £G-module with vertex P and with trivial source described
in introduction. In these notations we shall prove the following.

Theorem 2.1. H*(G,Mgg) = 0 if Ca(P) acts nontrivially on S.

We argue following a proof of Proposition 5.3 in [5]. If C(P) acts nontrivially
on S, then there exists a p’-elemnt y # 1 in Cg(P) such that y acts nontrivially
on S. Thus there exists a one dimensional submodule My of S|, p on which

y acts nontrivially. Then My1V¢®) has a summand isomorphic to Mgg(P ) be-

cause My is a projective kNg(P)/P-module and HOHlkNG(p)<M0TNG(P), S) =
Homyy)x p(Mo, S|y« p) # 0. Therefore M = ME s appears in summand of My1¢
and H*(G, M) < H*(G, My1¢). Now the result follows by Lemma 5.1 in [5].

3. PROOF OF "IF” PART

Let H be a subgroup of G and P be a p-subgroup of H. Then the module Mgk
where k = ky,(p) is the trivial KNy (P)-module is called a Scott module of H with
vertex P and we shall denote it by Sc. It is well known that Sck is a unique trivial
source module of H with vertex P which contains k.

Throughout this section let M = Mzg,s where P is a p-subgroup of G and S is
a simple kNg(P)-module on which Cg(P) acts trivially. Notice that the condition

that Cc(P) acts trivially on S is equivalent to the condition that M |pc,p) has a

direct summand isomorphic to SCPCG(P). In this section we shall give a proof of

7if”part of the theorem by 1nduct10n on |P|. We divide our proof in several steps.

Lemma 3.1. Let QQ be a subgroup of P such that Cp«(Q) C Q for any x € G with

Np(Q)Ca(Q)
P(Q)

Proof. We shall prove the lemma by induction on [P : Q]. If @ = P, then the

result clearly holds. Assume that Q # P and set R = Np(Q). Then R 2 Q. If

P* DO R for an element z € G, then Cp«(R) C Cp=(Q) C @ C R. So R satisfies

the assumption in the lemma. By induction M|y, g)c,(r) has a direct summand
isomorphic to SC%PEQCG( ). As Np(R) N RCs(R) = RC’p(R) = R, Sc RCG ) is
a summand of (SC%P Rgcc(R))l reg(r)- Thus M| g g has a summand 1somorphlc
to SCRCG and there exists an indecomposable dlrect summand M; of M| e o)
such that M| pe,(r) has a summand isomorphic to SCRCG (%) We shall show that

M is isomorphic to ScR . A vertex of M; contains R. On the otherhand M,

is P* N RCG(Q)—projective for some x € G. Hence P* N RCs(Q) 2 R for some

a € RCq(Q). P* N RC;(Q) = RCpza(Q) = R and therefore a vertex of M is

R. Set H = RCs(Q) N Ng(R). H = R(Ng(R) N Ce(Q)). We shall claim that

Ng(R) N Cq(Q)/Cq(R) is a p-group. Let y € Ng(R) N Ce(Q) be a p'-element.

Then (y) x @ acts on R by conjugation and (y) centralizes Cr(Q) as Cr(Q) C Q.
3
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By Thompson’s A x B Lemma (24.2 in [3]), y centralizes R and our claim follows.
Now let M, be the Green correspondent of M; with respect to (R, RCx(Q), H).
As Mi|gey(ry has a summand isomorphic to ScﬁCG(R), so has Mol pe,(r)y- As Mo
is R-projective and H/RCg(R) is a p-group, My itself is a Scott module Sc and
therefore M; is a Scott module chCG(Q). O

Let F; be an elementary abelian subgroup of P of maximal rank. Among the
conjugates ET of E; with Ef C P, choose Ey so that |Cp(Ep)| is maximal. Set
Qo = Cp(Eyp). Let P* O @y be a conjugate of P such that |Npa(Qp)| is maximal.
Now set @ = Q% ' and E = E¢ . Then E C P and Q = Cp(E). In these notations
we have the following.

Lemma 3.2. The following statements hold.

1. E=M(Q), that is, each element in Q of order p is contained in E.
2. Q) satisfies the assumption in Lemma 2.1.
3. Np(Q) = Np(E). And if P* O Q, then |Np=(E)| < |[Np(Q)].

Proof. As E is conjugate to E7, F is also of maximal rank in P. Hence the statement
(1) follows. By our choice of E, |Cp(E)| = |Cp(Ey)|. So |Cp(F)| is also maximal.
If P* > Q for z € G, then P D Q' and C'p(Efl) O Q°'. By maximality of
ICp(E)|, Cp(E* ") = Q* " and therefore Cp:(E) = Q. Thus Cp:(Q) C Cp«(E) =
(). Thus the statement (2) follows. Np(E) normalizes Cp(E) = @ and therefore
Np(E) C Np(Q). By (1) E is a characteristic subgroup of @) and Np(Q) C Np(E).
If P* D @ for an element = € G, then as in the above it follows that Cp=(E) = @
and Np=(Q) = Np«(E). Now by maximality of |[Np(Q)|, we have that |[Np(Q)| >
|Np=(Q)| = |Np«(FE)| and the statement (3) follows. O

For E C P and Q = Cp(FE) chosen as in the above, Ng(Q) C Ng(FE) by Lemma
2.2.(1). And by Lemma 2.1 and Lemma 2.2.(2) there exists an indecomposable
direct summand M; of M|y, g such that M|y, oo has a direct summand

isomorphic to SC%E%%(Q).

In the rest of this section , E C P, = Cp(F) and the kNg(E)-module M; will
be those satifying the above conditions. We have the following.

Lemma 3.3. A vertex of My is Np(Q). Milc, g is {Q%; v € Ng(E)}-projective

and has a direct summand isomorphic to Mg%(E), for some simple kNc,p)(Q)-

module T on which C¢(Q) acts trivially.

Proof. A vertex of M; contains Np(Q). On the otherhand M; is P* N Ng(E)-
projective for some z € G. So P**NNg(E) 2 Np(Q) for some a € Ng(FE). Then by
Lemma 2.2.(3) P** N Ng(E) = Npwa(E) = Np(Q) and it follows that a vertex of M;
is Np(Q). For x € Ng(E), Np(Q)* N Cq(E) = Cp(E)* = Q. Hence Mi|g, g is
{Q%;x € Ng(E)}-projective. As M1y, 0)cq (@) has a direct summand isomorphic to

S C]Nvi E%CG(Q), there exists an indecomposable direct summand My of M|, (g such

that Molge,, @) has an indecomposable direct summand isomorphic to chcc(Q).
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Such an indecomposable trivial source kCq(E)-module with vertex @ is isomorphic
to the module described in the lemma. O]

In proofs of the following two lemmas we shall use the idea of Symonds in [12].
Lemma 3.4. Assume that G = Cg(E). Then H*(G, M) # 0

Proof. Cq(P modE)/Cq(P) is a p-group as E is central in G. So as a kG / E-module,

M satisfies the assumption in the theorem for G/FE. By induction we may assume

that H*(G/E, M) # 0. We examine the Lyndon-Hochschild-Serre spectral sequence
EY" = HY(G/E,HY(E,M)) = H""(G, M)

Let n be the lowest degree with H"(G/E, M) # 0. As E is central in G, for each ¢,

a kG /E-module HY(E, M) is isomorphic to a direct sum of some copies of M (or 0).
Hence H™(G/E, HY(E,M)) = 0 for m < n. Thus E®° # 0 and H"(G,M) #0. O

By Lemma 2.3 and Lemma 2.4 H*(Cg(E),M) # 0. Using this fact we shall
examine H*(Ng(F), M) in the following two lemmas.

Let r be the rank of E. Set E = {(ay,--- ,a,) and o; € H'(E, k) = Hom(E, k) be
the element dual to a;. Then letting 3; = 5(a;) we have the polynomial subalgebra
k[B1, -+, 0] in H*(E, k), where (3 is the Bockstein map. Using Evens’ norm map,
we obtain homogeneous elements (1, - - - , (, € H*(Cg(FE), k) such that res (QZ)
B where p® is the p-part of |Cg(E) : E|. Set R = k[Cy,---,¢] C H*(Cg( ), k)
and Ry = reng(E)(R). The elements (; can be constructed in the prime field F,,.
We however do not know whether R can be taken Ng(FE)-invariant although Ry is

Ng(FE)-invariant. We remark the following fact.
For x € NG(E) Write BF = 3751 NijB3j, where \;; € F,. Then by our choice of ¢,

we have that rese¢" (¢z — > =1 AigGj) = 0. So resQG(E (¢F =225—1 Aij¢j) is nilpotent
for each Ng(FE)-congugate Qy because Q;(Q) = E. So replacing (;’s by its suitable p-
powers, we can assume that res CalB) (o — > i—1 AijG) = 0 for any QY. The kNg(E)-
module M; defined in Lemma 2. 3 is {QY;y € Ng(E)}-projective as kCq(E)-module.
Therefore for any element v € H*(Cg(E), My), we have v - (F = v - (377, X))
Thus when we consider multiplications of the elements in R on H*(Cg(E), M) ,we
may assume that R has an Ng(F)-action which coincides with that on Ry.

Lemma 3.5. Assume that G = Ng(FE). Then reng(E trgG(E (H*(Cq(E), M)) # 0.

Proof. By aresult of Evens (Theorem 10.3.5 [7], see also [6] and [1]), H*(Cg(E), M)
is free over the polynomial algebra R defined in the above. Let n be the lowest degree
with H*(Cg(E), M) # 0. By minimality of n, H"(Ce(E), M)NH*(Ce(E), M)I =0,
where I is the ideal in R of elements of positive degree. So a k-basis of H"(C(E), M)
can be extended to a free R-basis of H*(Cg(E), M) and we can conclude that
H"(Cg(E),M) - R = H"(Cg(E), M)®rR. As is remarked in [12], Ry contains a
free submodule F as G/Cq(F)-module. Set F' = RN (resE c(E ))*1(F0). Then by the
above remark it follows that that H"(Cg(E), M) - F = H"(Ce(E), M@, F is G-
invariant and H"(Cg(E), M)-F = H"(Cq(E), M)y Fy as G/Ce(E)-modules. Thus
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H*(Cg(E), M) also contains a free G/Cq(F)-module. So there exists an element
v € H*(Cg(E), M) such that 0 # > 0 /cu0m V" = reng(E)trgG(E) (7). O

For a subgroup A C Cg(E) with A D E, take a maximal subgroup F; of E such
that £y O AN E. Using the isomorphism AE/A = E/AN E and the epimorphism
EJ/ANE — E/E;, we have an element n(A) € Inf(H*(AE/A,k)) C H*(AE, k) such
that resg®(n(A)) € H%(E,k) is not nilpotent and res4?(n(A)) = 0. Using Evens’
norm map, set 7(A) = normi%(E)(n(A)) € H*(Cs(FE), k). By Mackey formula 7(A)
also satisfies the above conditions for n(A). And set p(4) = [ engm)/c0m T(A)" €
H*(Cq(E), k). Finally set p = [[4,p(A) € H*(Ce(E), k), where the product is
taken over the set of subgroups A of Cq(E) with A 2 E. p is Ng(E)-invariant.
It holds that resiG(E)(p) = 0 for any subgroup A C Cg(F) with A 2 E and
res$®®)(p) € H*(E, k) is not nilpotent. Notice that p is regular on H*(Cg(E), M)
where M is the kNg(E)-module in Lemma 2.3 because E is central in C(E) and
M is a trivial source module with kernel containing E.

Lemma 3.6. Assume that G = Ng(E). Then there exists an element o« € H*(G, M)
such that resg () # 0 and res§(a) = 0 for any subgroup A C G with A2 E.

Proof. Set C' = Cg(F). By Lemma 2.5 there exists v € H*(C, M) such that 0 #
resétré(y). Set a = tré(y - p) € H*(G,M). We shall show that « satisfies the
assumptions in the lemma.

For a subgroup A of G | res§(a) = resGtré(y - p) = D reC\G/A tra-aresSoa (7 -
p)*). As p is G-invariant, resgm(w p)?) = resé (Y )reséaa(p). If A D E, then
CNA 2 E and therefore res§(a) = 0. Again by the fact that p is G-invariant

resé () = resStré(y - p) = (res&tr&(y)) - p # 0 because p is regular on H*(C, M).

If res§(r) = 0, then res$.(a) = 0 for all z € G. Then as M| is {Q%;z € G}-
projective, it follows that res&(a) # 0 which is not the case. [

Now we can complete a proof for "If” part of the theorem of Symonds.
Theorem 3.7. If C¢(P) acts trivially on S, then H*(G, Mgg) # 0.

Proof. Let M; be the kNg(F)-module in Lemma 2.3. Then by Lemma 2.6, there
exists an element o« € H*(Ng(FE), M) such that reng(E)(oz) # 0 and res]XG(E)(a) =0
for any subgroup A C Ng(E) with A 2 E. As M is a direct summand of M|y g
we can regard o € H*(Ng(FE), M) for which the same conditions as in the above hold.
We shall show that resgtrgG(E)(oz) # 0. For an element x € G , if No(E)NQ* O E,
then E* = F as Q;(Q) = F and hence z € Ng(E). Thus for z ¢ Ng(E), we have

that resNGEgimQ(oﬂ) = (resnggmm,l(a))x = 0. Now Mackey formula says that
rethrN ;) (@) = resQ c(®) (o) # 0. O
REFERENCES

[1] A.Adem and R.J.Milgram, The mod 2 cohomology rings of rank 3 simple groups are Cohen-
Macaulay, Ann. of Math. Stud., 138, 2-13, 1996
6



[2]

[11]
[12]

[13]

J.L.Alperin, Local Representatiom Theory , Cambridge Studies in Advanced Mathematics,
11, Cambridge University Press, 1986

M. Aschbacher, Finite Group Theory, (second edition), Cambridge Studies in Advanced Math-
ematics, 10, Cambridge University Press, 2000

D.J.Benson, Representations and Cohomology II, Cambridge Studies in Advanced Mathemat-
ics, 31, Cambridge University Press, 1991

D.J.Benson,J.F.Carlson and G.R.Robinson, On the vanishing of group cohomology, J. Algebra,
131, 40-73, 1990

J.Duflot, Depth and equivariant cohomology, Comment. Math. Helvetici, 56, 627-637, 1981
L.Evens, The Cohomology of Groups, Oxford Mathematical Monographs, Clarendon Press,
1991

A.Hida, Control of fusion and cohomology of finite groups, RIMSO DO OO DOODOODOOOO
Oooopooooooon

G.Mislin, On group homomorphisms inducing mod-p cohomology isomorphisms, Comment.
Math. Helvetici, 65, 454-461, 1990

G.R.Robinson, Arithmetical properties of blocks, in Algebraic Groups and their Representa-
tions (Carter R.W and Saxl J. eds.), 213-232, Kluwer, 1998

V.P.Snaith, On a theorem of Mislin, Bull. London Math.Soc., 33,275-278, 2001

P.Symonds, The action of automorphisms on the cohomology of a p-group, Math. Proc. Camb.
Phil. Soc., 127, 495-496, 1999

P.Symonds, Mackey functors and control of fusion, preprint, Dec. 2002



