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Introduction

Let kG be the group algebra of a finite group G over an algebraically closed field
k of characteristic p > 0 . In 1990 [9] G.Mislin proved the following remarkable
theorem.

Theorem (Mislin). Let H be a subgroup of G. Then the restriction map in mod-p
cohomology resG

H : H∗(G, k) → H∗(H, k) is an isomorphism if and only if H controls
strong p-fusion in G.

”If” part in the theorem has long been known to be true. For ”Only if”part
Mislin’s proof uses deep results from algebraic topology. In 2001 [11] V.P.Snaith
gave an alternating proof of Mislin’s theorem which uses also topological results.
In [10] G.R.Robinson remarked that Mislin’s theorem can be obtained if one could
prove the non-vanishing of cohomology of certain types of trivial source kG-modules.

Isomorphism classes of indecomposable trivial source kG-modules are parametral-
ized as follows. Let P be a p-subgroup of G and S be a simple kNG(P )-module.

Let M
NG(P )
P,S be a projective cover of S as kNG(P )/P -module. Inflating M

NG(P )
P,S to

kNG(P ) and taking its Green correspondent, we obtain an indecomposable trivial
source module MG

P,S with vertex P . And each indecomposable trivial source module
is obtained in this way.

P.Symonds in [13] proved the following result from which Mislin’s theorem is
obtained following Robinson’s remark.

Theorem (Symonds). In the notations above, H∗(G,MG
P,S) 6= 0 if and only if

CG(P ) acts trivially on S.

A proof of the above theorem given by P.Symonds needs also topological methods.
My aim in this talk is to give an algebraic proof of the theorem of P.Symonds.

A.Hida [8] also obtained an algebraic proof of the above Symonds’theorem and
explained his idea in his talk at this meeting. A very elegant proof !!

In my lecture I first introduced the idea of Robinson to find an algebraic proof
of Mislin’s theorem and how his idea relates Symonds’theorem. This is included in
section 1 in this note. And then I discussed the theorem of Symonds. In the lecture
I only gave an outline of my proof of the theorem. I shall give my proof in detail in
this note.
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”Only if”part of the theorem has been essentially proved by Benson, Carlson and
Robinson in [5]. In section 2 in this note we shall give a proof of ”Only if part”
following arguments by them.

For ”If”part we first reduce the problem to some p-local subgroup. This is done
in section 3. Our p-local subgroup is a normalizer of some elementary abelian p-
group. Then we use the idea of Symonds in [12] to find a nonzero cohomology
element. There he made use of the Lyndon-Hochschild-Serre spectral sequence and
some result on the action of Aut(E) on the cohomology algebra H∗(E, k), where E
is an elementary abelian p-group. He needed also a result of Duflot [6] on the depth
of cohomology algebras of groups with central elementary abelian groups. For these
results there has been given algebraic proofs (see for example [2],[4] and [7]) and we
believe that our proof of the theorem is an algebraic one.

1. Robinson’s Idea

In this section let H be a subgroup of G and assume that resG
H : H∗(G, k) →

H∗(H, k) is an isomorphsm. We first remark the following.

Lemma 1.1. H contains a Sylow p-subgroup of G.

Proof. Consider an H-injective hull of kG; 0 → kG
f−→ kH ↑G→ L → 0. We obtain

the following long exact sequence

→ Hn(G, k)
f∗−→ Hn(G, kH ↑G) → Hn(G,L) → Hn+1(G, k)

f∗−→ Hn+1(G, kH ↑G) →
Identify Hn(G, kH ↑G) with Hn(H, kH) by Eckmann-Shapiro. Then it follows that
the map f∗ coincides with the restriction map resG

H . By our assumption we have
Hn(G, L) for n = 0. By a theorem of Benson- Carlson-Robinson (Theorem 2.4

[5]), Ĥn(G,L) = 0 for all n, where Ĥn is Tate’s cohomology. In particular, resG
H :

Ĥ−1(G, kG) → Ĥ−1(H, kH) is an isomorphism. Any non zero element in Ĥ−1(G, k)
represents the almost split sequence terminating at kG and it is well known that the
sequence does not split as a sequence of kH-modules if and only if H contains a
Sylow p-subgroup of G. Thus the lemma is proved.

Assume that H contains a Sylow p-subgroup of G and H does not control p-fusion.
Then there exists a p-subgroup P of H such that NG(P ) % CG(P )NH(P ). Choose P
maximal with this property, then CG(P ) = Z(P )×Op′(CG(P )) and CG(P )NH(P )/P
is a strongly p-embedded subgroup of NG(P )/P . Set C = CG(P )NH(P ). Then
kC ↑NG(P )= k ⊕M for some kNG(P )-module M . Each indecomposable summand

of M has the form M
NG(P )
P,S with CG(P ) ⊂ Ker S. (kH ↑G) ↓NG(P )= kNH(P ) ↑NG(P )

⊕U = kC ↑NG(P ) ⊕U ′ = kG ⊕ M ⊕ U ′ for some kNG(P )-modules U, U ′. By a
theorem of Burry-Carlson, kH ↑G= kG ⊕MG

P,S ⊕ V with Ker S ⊃ CG(P ).

Now Symonds’theorem implies that H(G,MG
P,S) 6= 0 and we can conclude that

H∗(H, k) = H∗(G, kH ↑G) % H∗(G, k) and the ”only if” part of Mislin’s theorem
follows.
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2. Proof of ”Only if” Part

Let P be a p-subgroup of G and S be a simple kNG(P )-module. And let MG
P,S

be an indecomposable kG-module with vertex P and with trivial source described
in introduction. In these notations we shall prove the following.

Theorem 2.1. H∗(G,MG
P,S) = 0 if CG(P ) acts nontrivially on S.

We argue following a proof of Proposition 5.3 in [5]. If CG(P ) acts nontrivially
on S, then there exists a p′-elemnt y 6= 1 in CG(P ) such that y acts nontrivially
on S. Thus there exists a one dimensional submodule M0 of S↓〈y〉×P on which

y acts nontrivially. Then M0↑NG(P ) has a summand isomorphic to M
NG(P )
P,S be-

cause M0↑NG(P ) is a projective kNG(P )/P -module and HomkNG(P )(M0↑NG(P ), S) ∼=
Homk〈y〉×P (M0, S↓〈y〉×P ) 6= 0. Therefore M = MG

P,S appears in summand of M0↑G

and H∗(G,M) ≤ H∗(G,M0↑G). Now the result follows by Lemma 5.1 in [5].

3. Proof of ”If” Part

Let H be a subgroup of G and P be a p-subgroup of H. Then the module MH
P,k

where k = kNH(P ) is the trivial kNH(P )-module is called a Scott module of H with
vertex P and we shall denote it by ScH

P . It is well known that ScH
P is a unique trivial

source module of H with vertex P which contains kH .
Throughout this section let M = MG

P,S where P is a p-subgroup of G and S is
a simple kNG(P )-module on which CG(P ) acts trivially. Notice that the condition
that CG(P ) acts trivially on S is equivalent to the condition that M↓PCG(P ) has a

direct summand isomorphic to Sc
PCG(P )
P . In this section we shall give a proof of

”if”part of the theorem by induction on |P |. We divide our proof in several steps.

Lemma 3.1. Let Q be a subgroup of P such that CP x(Q) ⊆ Q for any x ∈ G with

P x ⊇ Q. Then M↓NP (Q)CG(Q) has a direct summand isomorphic to Sc
NP (Q)CG(Q)
NP (Q) .

Proof. We shall prove the lemma by induction on [P : Q]. If Q = P , then the
result clearly holds. Assume that Q 6= P and set R = NP (Q). Then R ) Q. If
P x ⊇ R for an element x ∈ G, then CP x(R) ⊆ CP x(Q) ⊆ Q ⊂ R. So R satisfies
the assumption in the lemma. By induction M↓NP (R)CG(R) has a direct summand

isomorphic to Sc
NP (R)CG(R)
NP (R) . As NP (R) ∩ RCG(R) = RCP (R) = R, Sc

RCG(R)
R is

a summand of (Sc
NP (R)CG(R)
NP (R) )↓RCG(R). Thus M↓RCG(R) has a summand isomorphic

to Sc
RCG(R)
R and there exists an indecomposable direct summand M1 of M↓RCG(Q)

such that M1↓RCG(R) has a summand isomorphic to Sc
RCG(R)
R . We shall show that

M1 is isomorphic to Sc
RCG(Q)
R . A vertex of M1 contains R. On the otherhand M1

is P x ∩ RCG(Q)-projective for some x ∈ G. Hence P xa ∩ RCG(Q) ⊇ R for some
a ∈ RCG(Q). P xa ∩ RCG(Q) = RCP xa(Q) = R and therefore a vertex of M1 is
R. Set H = RCG(Q) ∩ NG(R). H = R(NG(R) ∩ CG(Q)). We shall claim that
NG(R) ∩ CG(Q)/CG(R) is a p-group. Let y ∈ NG(R) ∩ CG(Q) be a p′-element.
Then 〈y〉 × Q acts on R by conjugation and 〈y〉 centralizes CR(Q) as CR(Q) ⊆ Q.
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By Thompson’s A × B Lemma (24.2 in [3]), y centralizes R and our claim follows.
Now let M0 be the Green correspondent of M1 with respect to (R,RCG(Q), H).

As M1↓RCG(R) has a summand isomorphic to Sc
RCG(R)
R , so has M0↓RCG(R). As M0

is R-projective and H/RCG(R) is a p-group, M0 itself is a Scott module ScH
R and

therefore M1 is a Scott module Sc
RCG(Q)
R .

Let E1 be an elementary abelian subgroup of P of maximal rank. Among the
conjugates Ex

1 of E1 with Ex
1 ⊆ P , choose E0 so that |CP (E0)| is maximal. Set

Q0 = CP (E0). Let P a ⊇ Q0 be a conjugate of P such that |NP a(Q0)| is maximal.

Now set Q = Qa−1

0 and E = Ea−1

0 . Then E ⊆ P and Q = CP (E). In these notations
we have the following.

Lemma 3.2. The following statements hold.

1. E = Ω1(Q), that is, each element in Q of order p is contained in E.
2. Q satisfies the assumption in Lemma 2.1.
3. NP (Q) = NP (E). And if P x ⊇ Q, then |NP x(E)| ≤ |NP (Q)|.

Proof. As E is conjugate to E1, E is also of maximal rank in P . Hence the statement
(1) follows. By our choice of E, |CP (E)| = |CP (E0)|. So |CP (E)| is also maximal.

If P x ⊇ Q for x ∈ G, then P ⊇ Qx−1
and CP (Ex−1

) ⊇ Qx−1
. By maximality of

|CP (E)|, CP (Ex−1
) = Qx−1

and therefore CP x(E) = Q. Thus CP x(Q) ⊆ CP x(E) =
Q. Thus the statement (2) follows. NP (E) normalizes CP (E) = Q and therefore
NP (E) ⊆ NP (Q). By (1) E is a characteristic subgroup of Q and NP (Q) ⊆ NP (E).
If P x ⊇ Q for an element x ∈ G, then as in the above it follows that CP x(E) = Q
and NP x(Q) = NP x(E). Now by maximality of |NP (Q)|, we have that |NP (Q)| ≥
|NP x(Q)| = |NP x(E)| and the statement (3) follows.

For E ⊆ P and Q = CP (E) chosen as in the above, NG(Q) ⊆ NG(E) by Lemma
2.2.(1). And by Lemma 2.1 and Lemma 2.2.(2) there exists an indecomposable
direct summand M1 of M↓NG(E) such that M1↓NP (Q)CG(Q) has a direct summand

isomorphic to Sc
NP (Q)CG(Q)
NP (Q) .

In the rest of this section , E ⊆ P, Q = CP (E) and the kNG(E)-module M1 will
be those satifying the above conditions. We have the following.

Lemma 3.3. A vertex of M1 is NP (Q). M1↓CG(E) is {Qx; x ∈ NG(E)}-projective
and has a direct summand isomorphic to M

CG(E)
Q,T , for some simple kNCG(E)(Q)-

module T on which CG(Q) acts trivially.

Proof. A vertex of M1 contains NP (Q). On the otherhand M1 is P x ∩ NG(E)-
projective for some x ∈ G. So P xa∩NG(E) ⊇ NP (Q) for some a ∈ NG(E). Then by
Lemma 2.2.(3) P xa∩NG(E) = NP xa(E) = NP (Q) and it follows that a vertex of M1

is NP (Q). For x ∈ NG(E), NP (Q)x ∩ CG(E) = CP (E)x = Qx. Hence M1↓CG(E) is
{Qx; x ∈ NG(E)}-projective. As M1↓NP (Q)CG(Q) has a direct summand isomorphic to

Sc
NP (Q)CG(Q)
NP (Q) , there exists an indecomposable direct summand M0 of M1↓CG(E) such

that M0↓QCG(Q) has an indecomposable direct summand isomorphic to Sc
QCG(Q)
Q .
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Such an indecomposable trivial source kCG(E)-module with vertex Q is isomorphic
to the module described in the lemma.

In proofs of the following two lemmas we shall use the idea of Symonds in [12].

Lemma 3.4. Assume that G = CG(E). Then H∗(G,M) 6= 0

Proof. CG(P modE)/CG(P ) is a p-group as E is central in G. So as a kG/E-module,
M satisfies the assumption in the theorem for G/E. By induction we may assume
that H∗(G/E, M) 6= 0. We examine the Lyndon-Hochschild-Serre spectral sequence
;

Ep,q
2 = Hp(G/E, Hq(E, M)) ⇒ Hp+q(G, M)

Let n be the lowest degree with Hn(G/E, M) 6= 0. As E is central in G, for each q,
a kG/E-module Hq(E,M) is isomorphic to a direct sum of some copies of M (or 0).
Hence Hm(G/E, Hq(E, M)) = 0 for m < n. Thus En,0

∞ 6= 0 and Hn(G, M) 6= 0.

By Lemma 2.3 and Lemma 2.4 H∗(CG(E),M) 6= 0. Using this fact we shall
examine H∗(NG(E),M) in the following two lemmas.

Let r be the rank of E. Set E = 〈a1, · · · , ar〉 and αi ∈ H1(E, k) = Hom(E, k) be
the element dual to ai. Then letting βi = β(αi) we have the polynomial subalgebra
k[β1, · · · , βr] in H∗(E, k), where β is the Bockstein map. Using Evens’ norm map,

we obtain homogeneous elements ζ1, · · · , ζr ∈ H∗(CG(E), k) such that res
CG(E)
E (ζi) =

βi
pa

where pa is the p-part of |CG(E) : E|. Set R = k[ζ1, · · · , ζr] ⊆ H∗(CG(E), k)

and R0 = res
CG(E)
E (R). The elements ζi can be constructed in the prime field Fp.

We however do not know whether R can be taken NG(E)-invariant although R0 is
NG(E)-invariant. We remark the following fact.

For x ∈ NG(E), write βx
i =

∑r
j=1 λijβj, where λij ∈ Fp. Then by our choice of ζi,

we have that res
CG(E)
E (ζx

i −
∑r

j=1 λijζj) = 0. So res
CG(E)
Qy (ζx

i −
∑r

j=1 λijζj) is nilpotent

for each NG(E)-congugate Qy because Ω1(Q) = E. So replacing ζi’s by its suitable p-

powers, we can assume that res
CG(E)
Qy (ζx

i −
∑r

j=1 λijζj) = 0 for any Qy. The kNG(E)-

module M1 defined in Lemma 2.3 is {Qy; y ∈ NG(E)}-projective as kCG(E)-module.
Therefore for any element γ ∈ H∗(CG(E),M1), we have γ · ζx

i = γ · (∑r
j=1 λijζj).

Thus when we consider multiplications of the elements in R on H∗(CG(E), M1) ,we
may assume that R has an NG(E)-action which coincides with that on R0.

Lemma 3.5. Assume that G = NG(E). Then resG
CG(E)tr

G
CG(E)(H

∗(CG(E), M)) 6= 0.

Proof. By a result of Evens (Theorem 10.3.5 [7], see also [6] and [1]), H∗(CG(E), M)
is free over the polynomial algebra R defined in the above. Let n be the lowest degree
with Hn(CG(E), M) 6= 0. By minimality of n, Hn(CG(E), M)∩H∗(CG(E),M)I = 0,
where I is the ideal in R of elements of positive degree. So a k-basis of Hn(CG(E), M)
can be extended to a free R-basis of H∗(CG(E),M) and we can conclude that
Hn(CG(E),M) · R ∼= Hn(CG(E),M)⊗kR. As is remarked in [12], R0 contains a

free submodule F0 as G/CG(E)-module. Set F = R∩ (res
CG(E)
E )−1(F0). Then by the

above remark it follows that that Hn(CG(E),M) · F ∼= Hn(CG(E),M)⊗kF is G-
invariant and Hn(CG(E),M)·F ∼= Hn(CG(E),M)⊗kF0 as G/CG(E)-modules. Thus
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H∗(CG(E), M) also contains a free G/CG(E)-module. So there exists an element
γ ∈ H∗(CG(E),M) such that 0 6= ∑

x∈G/CG(E) γx = resG
CG(E)tr

G
CG(E)(γ).

For a subgroup A ⊂ CG(E) with A + E, take a maximal subgroup E1 of E such
that E1 ⊇ A ∩ E. Using the isomorphism AE/A ∼= E/A ∩ E and the epimorphism
E/A∩E → E/E1, we have an element η(A) ∈ Inf(H2(AE/A, k)) ⊂ H2(AE, k) such
that resAE

E (η(A)) ∈ H2(E, k) is not nilpotent and resAE
A (η(A)) = 0. Using Evens’

norm map, set τ(A) = norm
CG(E)
AE (η(A)) ∈ H∗(CG(E), k). By Mackey formula τ(A)

also satisfies the above conditions for η(A). And set ρ(A) =
∏

x∈NG(E)/CG(E) τ(A)x ∈
H∗(CG(E), k). Finally set ρ =

∏
A ρ(A) ∈ H∗(CG(E), k), where the product is

taken over the set of subgroups A of CG(E) with A + E. ρ is NG(E)-invariant.

It holds that res
CG(E)
A (ρ) = 0 for any subgroup A ⊂ CG(E) with A + E and

res
CG(E)
E (ρ) ∈ H∗(E, k) is not nilpotent. Notice that ρ is regular on H∗(CG(E),M1)

where M1 is the kNG(E)-module in Lemma 2.3 because E is central in CG(E) and
M1 is a trivial source module with kernel containing E.

Lemma 3.6. Assume that G = NG(E). Then there exists an element α ∈ H∗(G,M)
such that resG

Q(α) 6= 0 and resG
A(α) = 0 for any subgroup A ⊂ G with A + E.

Proof. Set C = CG(E). By Lemma 2.5 there exists γ ∈ H∗(C,M) such that 0 6=
resG

CtrG
C(γ). Set α = trG

C(γ · ρ) ∈ H∗(G,M). We shall show that α satisfies the
assumptions in the lemma.

For a subgroup A of G , resG
A(α) = resG

AtrG
C(γ · ρ) =

∑
x∈C\G/A trA

C∩AresC
C∩A((γ ·

ρ)x). As ρ is G-invariant, resC
C∩A((γ · ρ)x) = resC

C∩A(γx)resC
C∩A(ρ). If A + E, then

C ∩ A + E and therefore resG
A(α) = 0. Again by the fact that ρ is G-invariant

resG
C(α) = resG

CtrG
C(γ · ρ) = (resG

CtrG
C(γ)) · ρ 6= 0 because ρ is regular on H∗(C, M).

If resG
Q(α) = 0, then resG

Qx(α) = 0 for all x ∈ G. Then as M↓C is {Qx; x ∈ G}-
projective, it follows that resG

C(α) 6= 0 which is not the case.

Now we can complete a proof for ”If”part of the theorem of Symonds.

Theorem 3.7. If CG(P ) acts trivially on S, then H∗(G,MG
P,S) 6= 0.

Proof. Let M1 be the kNG(E)-module in Lemma 2.3. Then by Lemma 2.6, there

exists an element α ∈ H∗(NG(E),M1) such that res
NG(E)
Q (α) 6= 0 and res

NG(E)
A (α) = 0

for any subgroup A ⊂ NG(E) with A + E. As M1 is a direct summand of M↓NG(E),
we can regard α ∈ H∗(NG(E),M) for which the same conditions as in the above hold.
We shall show that resG

QtrG
NG(E)(α) 6= 0. For an element x ∈ G , if NG(E)∩Qx ⊇ E,

then Ex = E as Ω1(Q) = E and hence x ∈ NG(E). Thus for x /∈ NG(E), we have

that res
NG(E)x

NG(E)x∩Q(αx) = (res
NG(E)

NG(E)∩Qx−1 (α))x = 0. Now Mackey formula says that

resG
QtrG

NG(E)(α) = res
NG(E)
Q (α) 6= 0.
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