Freiling’s Axiom of Symmetry (A_{\aleph_0}) is the following statement: For every function $F : 2^\omega \to [2^\omega]^{\leq \omega}$ which assigns a countable set of reals to each real, there exist two distinct reals, say a and b, such that $a \notin F(b)$ and $b \notin F(a)$.

Fact 1 (Freiling[1]). ZFC $\vdash A_{\aleph_0} \iff \neg \text{CH}$. \triangleright

Galen Weitkamp has considered (in [3]) an effective version of A_{\aleph_0}.

Fix a recursive bijection $\langle , \rangle : \omega \times \omega \to \omega$. For each $a \in 2^\omega$ and $n \in \omega$, the real $(a)_n \in 2^\omega$ is defined by $(a)_n(k) = a(\langle n, k \rangle)$. In this way every real $a \in 2^\omega$ naturally codes a countable set $\{ (a)_n : n \in \omega \}$.

Definition. Let Γ be a pointclass. Then $A(\Gamma)$ states: Let $f : 2^\omega \to 2^\omega$ be a function whose graph as subset of $2^\omega \times 2^\omega$ belongs to the class Γ, then there exist two distinct reals a and b such that

$$\forall n \in \omega \left[x \neq (f(y))_n \land y \neq (f(x))_n \right].$$

Fact 2 (Weitkamp [3]).

(1) ZF + DC $\vdash A(\Sigma^1_1)$.

(2) $A(\Pi^1_1) \iff A(\Sigma^1_2) \iff 2^\omega \not\subset L$. \triangleright

Fact 2 (2) gives an effective version of Freiling’s Fact 1. However, there are some difficulties within Weitkamp’s formulation:

1. Freiling has considered A_{null} and A_{meager} as well, replacing “countable” by “null” and “meager” respectively. It is not clear how we can modify Weitkamp’s setting to handle these generalizations.

2. Giving a countable set of reals is not the same thing as giving its code. From a code you can easily obtain a countable set as Weitkamp does. But for each countable set $C \in [2^\omega]^{\leq \omega}$ there exist uncountably many reals which codes C, and you do not know how to choose one.

To investigate this second point more closely, suppose we are given a relation $R \subset 2^\omega \times 2^\omega$ which is somehow *nicely definable* (Borel, analytic, or
anything). Suppose also that for every \(x \in 2^\omega \) the vertical section \(R_x = \{ y : R(x, y) \} \) is nonempty and countable. In such a case can you always define a function \(f : 2^\omega \to 2^\omega \) such that \(R_x = \{ (f(x))_n : n \in \omega \} \)? For example, the following question should be a challenging exercise:

Question 3. Define a function \(f : 2^\omega \to 2^\omega \) so that

\[
\{ (f(x))_n : n \in \omega \} = \{ y \in 2^\omega : y \text{ is recursive in } x \}
\]

for every \(x \in 2^\omega \). At which level of the arithmetical hierarchy can such \(f \) be?

From this point of view, the following reformulation seems more natural to me.

Definition. Let \(A^*(\Gamma) \) state: For a relation \(R \subseteq 2^\omega \times 2^\omega \) in \(\Gamma \), if every vertical section \(R_x \) is countable, then there are two distinct reals \(a \) and \(b \) such that both \(R(a, b) \) and \(R(b, a) \) fail.

This is not always equivalent to Weitkamp’s \(A(\Gamma) \). We still have

\[
A^*(\Sigma^1_2) \leftrightarrow A^*(\Delta^1_2) \leftrightarrow 2^\omega \not\subseteq L,
\]

so \(A^*(\Sigma^1_2) \) and \(A(\Sigma^1_2) \) are equivalent. On the other hand, we have (by the Fubini Theorem)

\[
ZF + DC \models A^*(\Pi^1_1).
\]

Therefore \(A^*(\Pi^1_1) \) is strictly weaker than \(A(\Pi^1_1) \).

Our version has one obvious advantage. It is quite easy to formulate \(A^*_{\text{null}}(\Gamma) \) and \(A^*_{\text{meager}}(\Gamma) \). Then by Fubini and Kuratowski-Ulam Theorems,

Fact 4. For every pointclass \(\Gamma \),

1. \(\text{LM}(\Gamma) \rightarrow A^*_{\text{null}}(\Gamma) \), and
2. \(\text{BP}(\Gamma) \rightarrow A^*_{\text{meager}}(\Gamma) \). \(\triangleleft \)

It is amusing to point out that in certain cases these arrows are inverted.

Fact 5.

1. \(\text{LM}(\Delta^1_2) \leftrightarrow A^*_{\text{null}}(\Delta^1_2) \), and
2. \(\text{BP}(\Delta^1_2) \leftrightarrow A^*_{\text{meager}}(\Delta^1_2) \).
Here, I will give only a proof of (1), since (2) can be proved similarly.

We already know that $\text{LM}(\Delta^1_1)$ implies $A^*_{\text{null}}(\Delta^1_1)$. To see the converse, suppose that $\text{LM}(\Delta^1_1)$ fails. Then there is no random real over L. In other words, every real $r \in 2^{\omega}$ belongs to some null G_δ set with constructible code.

Let $U \subset 2^{\omega} \times 2^{\omega}$ be a universal G_δ set which is lightface Π^0_2. Then our hypothesis $\neg \text{LM}(\Delta^1_1)$ can be written as

$$\forall r \in 2^{\omega} \exists c \in 2^{\omega} \left[c \in L \land \mu(U_c) = 0 \land r \in U_c \right].$$

where μ denotes the Lebesgue measure. Since the $\left[\ldots \right]$ part of the statement is Σ^1_2, the Novikov-Kondô-Addison Theorem gives a Δ^1_2 function $\varphi : 2^{\omega} \to 2^{\omega}$ such that

$$\forall r \in 2^{\omega} \left[\varphi(r) \in L \land \mu(U_{\varphi(r)}) = 0 \land r \in U_{\varphi(r)} \right].$$

Let $<^*$ be a Σ^1_2 wellordering of $2^{\omega} \cap L$ into order-type ω_1. We may assume

$$L \models \left[<^* \text{ is a } \Sigma^1_2 \text{-good wellordering} \right]$$

in the sense explained in Section 5A of [2]. Now define $R \subset 2^{\omega} \times 2^{\omega}$ by

$$R(x, y) \iff \exists c \leq^* \varphi(x) \left[\mu(U_c) = 0 \land y \in U_c \right].$$

It is straightforward to see that every vertical section R_x is null and that every two reals a and b satisfy either $R(a, b)$ or $R(b, a)$ according to $\varphi(b) \leq^* \varphi(a)$ or not. Thus what remains to see is:

Lemma 6. The relation R is Δ^1_2.

Proof. Let $\text{IS}(x, y)$ be the predicate that tells x codes the initial segment of \leq^* with top y. Exercise 5A.1 of [2] shows that $V = L$ implies that IS is Δ^1_2. Even when $V \neq L$, the predicate

$$\text{IS}'(x, y) \iff x, y \in 2^{\omega} \cap L \land L \models \text{IS}(x, y)$$

is still Σ^1_2. We then have

$$\neg R(x, y) \iff \forall c \leq^* \varphi(x) \left[\mu(U_c) > 0 \lor y \notin U_c \right] \iff \exists b \left[b \in L \land \text{IS}'(b, \varphi(x)) \land \forall n \in \omega \left[\mu(U_{(b), n}) > 0 \lor y \notin U_{(b), n} \right] \right]$$

which gives a Σ^1_2 description of negation of R. \qedsymbol

This completes the proof of Fact 5.

Question 7. Does $A^*_{\text{null}}(\Sigma^1_2)$ imply $\text{LM}(\Sigma^1_2)$?
References

