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Abstract. Let G be an abelian topological group. The symbol Ĝ denotes the group of all
continuous characters χ : G → T endowed with the compact open topology. A subset E of
G is said to be qc-dense in G provided that χ(E) ⊆ ϕ([−1/4, 1/4]) holds only for the trivial
character χ ∈ Ĝ, where ϕ : R → T = R/Z is the canonical homomorphism. A super-sequence
is a non-empty compact Hausdorff space S with at most one non-isolated point (to which S
converges). We prove that an infinite compact abelian group G is connected if and only if
its arc component Ga contains a super-sequence converging to 0 that is qc-dense in G. This
gives as a corollary a recent theorem of Außenhofer: For a connected locally compact abelian
group G, the restriction homomorphism r : Ĝ → Ĝa defined by r(χ) = χ �Ga for χ ∈ Ĝ, is
a topological isomorphism. We show that an infinite compact group G is connected if and
only if its arc component Ga contains a super-sequence converging to the identity that is
qc-dense in G and generates a dense subgroup of G. We also offer a short alternative proof
of the result of Hofmann and Morris on the existence of suitable sets of minimal size in the
arc component of a compact connected group [15, Theorem 12.42].

1. Introduction

The symbol w(X) denotes the weight of a topological space X, c denotes the cardinality of
the continuum and N denotes the set of natural numbers. All topological groups are assumed
to be Hausdorff .

Let G be a topological group. We denote by Ĝ the group of all continuous characters
χ : G → T endowed with the compact open topology. A subgroup D of G determines G if

the restriction homomorphism r : Ĝ→ D̂ defined by r(χ) = χ �D for χ ∈ Ĝ, is a topological
isomorphism [5]. If G is locally compact and abelian, then every subgroup D that determines

G must be dense in G. Furthermore, when D is dense in G, the map r : Ĝ→ D̂ is a continuous
isomorphism.

Let us recall three cornerstone results in the topic of determining subgroups.

Theorem 1.1. [1, 4] A metrizable abelian group G is determined by each dense subgroup of
G.
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Theorem 1.2. ([13]; proved earlier in [5] under the assumption of CH) Every non-metrizable
compact abelian group G contains a dense subgroup that does not determine G.

Theorem 1.3. [3] The arc component Ga of a connected locally compact abelian group G
determines G.

Obviously, Theorem 1.2 inverts Theorem 1.1 for compact abelian groups.
Theorem 1.3 is used in [2] to prove that the uncountable powers of Z are not strongly

reflexive, thereby resolving a problem raised by Banaszczyk on whether uncountable powers
of the reals R are strongly reflexive.

According to a well-known result of Eilenberg and Pontryagin, in a connected locally com-
pact abelian group G the arc component Ga is dense. Since a subgroup of a locally compact
abelian group determining it must be dense, Theorem 1.3 is a strengthening of this classical
result.

While Theorem 1.3 is a corollary of Theorem 1.1 for a metrizable group G, in the non-
metrizable case the mere density of Ga in G (ensured by the classical result of Eilenberg and
Pontryagin) need not guarantee that Ga determines G, as witnessed by Theorem 1.2.

Definition 1.4. Let ϕ : R → T = R/Z be the canonical homomorphism and T+ =
ϕ([−1/4, 1/4]). We will say that a non-empty subset E of a topological group G is qc-dense
in G (an abbreviation for quasi-convexly dense) provided that χ(E) ⊆ T+ only for the trivial
continuous homomorphism χ : G→ T.

This notion was introduced in [6] in the abelian context, and its significance for applications
has been recently demonstrated in [10]. In particular, qc-density was used in [10] to establish
essential properties of determining subgroups of compact abelian groups, thereby allowing to
get a short elementary proof of Theorem 1.2.

The host of applications of qc-dense sets is made possible by the ultimate connection be-
tween the notions of determining subgroup and qc-density described in the next fact:

Fact 1.5. A subgroup D of a compact abelian group G determines it if and only if there exists
a compact subset of D that is qc-dense in G.

Fact 1.5 is proved in [10, Fact 1.4]. It is a particular case of a more general fact stated
without proof (and in equivalent terms) in [5, Remark 1.2(a)] and [13, Corollary 2.2].

It has been recently shown in [10] that qc-dense compact subsets (and thus determining
subgroups) of a compact abelian group must be rather big.

Theorem 1.6. [10, Corollary 2.2] If a closed subset X of an infinite compact abelian group
G is qc-dense in G, then w(X) = w(G).

A super-sequence is a non-empty compact Hausdorff space X with at most one non-isolated
point x∗ [9]. We will call x∗ the limit of X and say that X converges to x∗. Observe that a
countably infinite super-sequence is a convergent sequence (together with its limit).

Being an immediate consequence of [1, Theorem 4.3 or Corollary 4.4], the following result
is essentially due to Außenhofer:

Theorem 1.7. [1] Every dense subgroup D of an infinite compact metric abelian group G
contains a sequence converging to 0 that is qc-dense in G.

In particular, every infinite compact metric abelian group has a qc-dense sequence con-
verging to 0. This statement has been recently extended to all compact groups by replacing
convergent sequences with super-sequences:
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Theorem 1.8. [10] Every infinite compact abelian group contains a qc-dense super-sequence
converging to 0.

A common strengthening of both Theorems 1.7 and 1.8 is impossible. Indeed, every non-
metrizable compact abelian group G contains a dense subgroupH such that no super-sequence
S ⊆ H is qc-dense in G. To see this, apply Theorem 1.2 to get a dense subgroup H of G
that does not determine G, and then notice that any super-sequence S ⊆ H (being compact)
cannot be qc-dense in G by Fact 1.5.

Definition 1.9. Let G be a topological group with the identity e.

(i) A subspace X of G topologically generates G if the subgroup of G generated by X is
dense in G.

(ii) If a discrete subset S of G topologically generates G and S ∪ {e} is closed in G, then
S is called a suitable set for G [14].

The proof of the following fact is straightforward.

Fact 1.10. [10, Fact 1.3(ii)] Every qc-dense subset of a compact abelian group topologically
generates it.

A convergent super-sequence is never a suitable set and a suitable set is never a convergent
super-sequence. Nevertheless, there is a close relation between these two concepts summarized
in the following

Remark 1.11. Clearly, if S is a super-sequence in G that converges to e and topologically
generates G, then S \ {e} is a suitable set for G. Conversely, if G is compact and S is a
suitable set for G, then S ∪ {e} must be a super-sequence.

It follows from Remark 1.11 that a subgroup D of a compact group G contains a super-
sequence converging to the identity that topologically generates G if and only if D contains
an infinite suitable set for G. In the “if” part of this statement the assumption that the
suitable set is infinite is essential. Indeed, there exists a dense monothetic subgroup D of the
compact abelian group G = Tc such that all compact subsets of D are finite [12]. (Note that
a monothetic group has a suitable set consisting of a singleton.)

Remark 1.12. (i) If a super-sequence S converging to 0 is qc-dense in a compact abelian
group G, then S \ {0} is a suitable set for G. This is an immediate corollary of Fact
1.10 and Remark 1.11.

(ii) A suitable set for a compact abelian group G need not be qc-dense in G. Indeed, it
is well-known that the group Tc is monothetic, that is, topologically generated by a
singleton S. Clearly, S is a suitable set for Tc. Since w(S) ≤ ω < c = w(Tc), S cannot
be qc-dense in Tc by Theorem 1.6.

Hofmann and Morris discovered the following fundamental result:

Theorem 1.13. ([14]; see also [15]) Every locally compact group has a suitable set. 1

Theorem 1.8 implies the particular case of Theorem 1.13 for compact abelian groups. In-
deed, let G be a compact abelian group. If G is finite, then G \ {0} is obviously a suitable
set for G. If G is infinite, then Theorem 1.8 guarantees the existence of a qc-dense super-
sequence S in G converging to 0. Now S \ {0} is a suitable set for G by Remark 1.12(i). In

1A “purely topological” proof of this result based on Michael’s selection theorem can be found in [17].
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the opposite direction, it follows from Remark 1.12(ii) that the particular case of Theorem
1.13 for compact abelian groups does not imply Theorem 1.8.

Theorem 1.13 allowed Hofmann and Morris to introduce the generating rank

s(G) = min{|S| : S is a suitable set for G}
of a (locally) compact group G (see [15, Definition 12.15(i)]). This is undoubtedly one of the
most important cardinal invariants of a compact group, as witnessed by the fact that the last
chapter of the monograph [15] by Hofmann and Morris is entirely devoted to the study of
this cardinal function and its relation to the weight. In particular, a complete computation
of s(G) in terms of w(G) for a compact group G has been obtained in [15, Section 12] (see
also [9] for alternative self-contained proofs). We will state explicitly only a particular case
that we will need in this manuscript.

For a cardinal number κ define ω
√
κ = min{τ ≥ ω : τω ≥ κ}.

Theorem 1.14. ([15, Theorem 12.25]; see also [9, Corollary 9.2]) Let G be a compact con-
nected group. Then:

(i) s(G) ≤ ω
√
w(G);

(ii) if w(G) > c, then s(G) = ω
√
w(G).

The concluding theorem from the monograph [15] establishes the existence of suitable sets
of minimal size in the arc component of a compact connected group:

Theorem 1.15. [15, Theorem 12.42] The arc component Ga of a compact connected group G
contains a suitable set S for G such that |S| = s(G).

In Section 5 we apply the techniques developed in this paper and the author’s manuscript
[9] to offer a short alternative proof of this theorem.

2. Results

Our first result characterizes connected compact abelian groups in the spirit of Theorem
1.8.

Theorem 2.1. For an infinite compact abelian group G the following conditions are equiva-
lent:

(i) the arc component Ga of G contains a super-sequence of size ≤ w(G) converging to 0
that is qc-dense in G;

(ii) Ga contains a suitable set S for G such that |S| = s(G);
(iii) G is connected.

In view of Fact 1.5, the implication (iii)→(i) of Theorem 2.1 yields Theorem 1.3 when G is
compact. The general case of Theorem 1.3 easily follows from the compact case, see the proof
in the end of Section 4. As a by-product, we obtain an alternative, short and self-contained
proof of Theorem 1.3.

The implication (iii)→(ii) of Theorem 2.1 coincides with the abelian case of Theorem 1.15
(that is, with the conjunction of Lemma 12.32 and Assertion (B) from [15]). It is this abelian
case that presents the main difficulty in the proof of Theorem 1.15 (see [15, Lemma 12.31]).

Our second result characterizes connected compact groups in the spirit of Theorem 1.8. We
denote by c(Z(G)) is the connected component of the center Z(G) of G.

Theorem 2.2. For an infinite compact group G the following conditions are equivalent:
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(i) the arc component Ga of G contains a suitable set for G;
(ii) Ga contains an infinite suitable set for G that is qc-dense in G;
(iii) G is connected and Ga contains a super-sequence S that is qc-dense in G, topologi-

cally generates c(Z(G)) and satisfies the inequality |S| ≤ w(c(Z(G))); furthermore, S
converges to eG whenever c(Z(G)) is non-trivial;

(iv) G is connected.

Remark 2.3. (a) Let G = Tc. According to Remark 1.12(ii), s(G) = 1 yet no singleton is
qc-dense in G. Since Ga = G, this shows that no suitable set S for G (inside Ga) such that
|S| = s(G) is qc-dense in G. We conclude that Theorem 1.15 does not imply Theorem 2.2.

(b) One cannot “merge” Theorems 1.15 and 2.2 by adding the following item to the list of
equivalent conditions in Theorem 2.2:

(v) Ga contains a suitable set S for G that is qc-dense in G and satisfies |S| = s(G).

Indeed, the example from item (a) shows that the implication (iv)→(v) fails.

(c) One cannot weaken item (iii) in Theorem 2.2 to the following one:

(ii∗) Ga contains a super-sequence converging to the identity that is qc-dense in G.

Indeed, for every finite simple non-commutative group L the compact group G = T × L has
a sequence S ⊆ Ga = T×{e} converging to the identity (0, e) of G that is qc-dense in G, see
Example 5.3. Since G is not connected, the implication (ii∗)→(iv) fails.

Definition 2.4. Define the qc-weight qcw(G) of a compact group G by

qcw(G) = min{|X| : X is a closed qc-dense subset of G}.

Using this new cardinal invariant, Theorem 1.6 can be restated as follows:

(1) qcw(G) = w(G) for an infinite compact abelian group G.

Our next theorem computes the value of qcw(G) for an infinite compact connected group G.

Theorem 2.5. Let G be an infinite compact connected group. Then qcw(G) = w(c(Z(G))).

With the help of this theorem we can now characterize compact connected groups which
satisfy condition (v) from Remark 2.3.

Corollary 2.6. For an infinite compact connected group G the following conditions are equiv-
alent:

(a) s(G) ≥ w(c(Z(G)));
(b) there exists a suitable set for G is size s(G) that is qc-dense in G;
(c) Ga contains a suitable set for G of size s(G) that is qc-dense in G.

Proof. The implication (c)→(b) is trivial, the implication (b)→(a) follows from Theorem 2.5.
Let us prove the remaining implication (a)→(c). Applying Theorem 2.2, we can find a super-
sequence S contained in Ga such that |S| ≤ w(c(Z(G))) and S is qc-dense in G. According
to Theorem 1.15, there exists a suitable set T for G contained in Ga with |T | = s(G).
Now X = S ∪ T is a suitable set for G contained in Ga that is qc-dense in G and satisfies
|X| = max{s(G), w(c(Z(G)))} = s(G). �

Combining the obvious inequality s(G) ≤ w(G) with (1), we conclude that s(G) ≤ qcw(G)
for an infinite compact abelian group G. Our next example demonstrates that the cardi-
nal invariants qcw(G) and s(G) become “independent of each other” when one drops the
assumption of commutativity (even in the class of compact connected groups).
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Example 2.7. Fix infinite cardinals κ and λ. Take a simple connected Lie group L0 and

define K = Q̂κ and L = Lλ
0 . Then G = K × L is an infinite compact connected group.

(a) qcw(G) = κ. Indeed, c(Z(G)) = Z(G) = K × {eL}, and so w(c(Z(G))) = κ. Now
apply Theorem 2.5.

(b) If max{κ, λ} > c, then s(G) = max{κ1, λ1}, where κ1 = ω
√
κ and λ1 = ω

√
λ (Theorem

1.14).
(c) If λ > 2κ, then qcw(G) < s(G). Indeed, qcw(G) = κ by (a), and s(G) ≥ λ1 > κ by

(b).
(d) If max{κ, λ} > c, κ1 < κ and λ < κ, then s(G) < qcw(G). Indeed, λ1 ≤ λ < κ and

κ1 < κ imply s(G) = max{κ1, λ1} < κ = qcw(G) by (b) and (a), respectively.

Problem 2.8. Compute qcw(G) for any infinite compact group G.

Remark 2.9. There exists a dense (connected, locally connected, countably compact) subgroup
H of (the compact, connected abelian group) G = T2c

such that H contains no suitable set
for G. Indeed, one can take as H the dense subgroup of G without a suitable set for H
constructed in [11, Corollary 2.9].

The proofs of all theorems are postponed until Sections 4 and 5.

3. A qc-dense super-sequence in the arc component of Q̂

Our main result in this section is Lemma 3.4. It follows from the density of Q̂a in Q̂ and
Theorem 1.7. However, Außenhofer’s proof of Theorem 1.7 relies on Arzela-Ascoli theorem and
an inductive construction, so the qc-dense sequence she constructs in her proof is “generic”.
To keep this manuscript self-contained, we provide a “constructive” example of a “concrete”
qc-dense sequence in Qa.

The proof of the following fact is straightforward from the definition.

Fact 3.1. Let G and H be topological groups and π : H → G a continuous surjective group
homomorphism. If a subset E of H is qc-dense in H, then π(E) is qc-dense in G.

Example 3.2. Let T =
{

1
2n

: n ∈ N, n ≥ 1
}
∪ {0}. The set ϕ(T ) is a qc-dense sequence in

T converging to 0. Indeed, let χ ∈ T̂ be a non-zero character. Then there exists m ∈ Z \ {0}
such that χ(x) = mx for all x ∈ T. Let n = |m|. Then 1

2n
∈ T and so x = ϕ

(
1
2n

)
∈ ϕ(T ).

Since χ(x) = mx = ϕ
(

m
2n

)
= ϕ

(
1
2

)
6∈ T+, we have χ(ϕ(T )) \ T+ 6= ∅. This proves that ϕ(T )

is qc-dense in T.

For g ∈ G the symbol 〈g〉 denotes the cyclic subgroup of G generated by g. For a prime
number p let Zp denote the group of p-adic integers.

Lemma 3.3. Let P = {pn : n ∈ N} be a faithful enumeration of the set P of prime numbers.
Define

H =
∏
n∈N

Zpn ,

and let v = {1pn}n∈N ∈ H, where each 1pn is the identity of Zpn. For n ∈ N define kn =
(p0p1 . . . pn−1)

n. Then the set

(2) S = {mknv : n ∈ N,m ≤ kn+1} ∪ {0} ⊆ 〈v〉
is a sequence converging to 0 that is qc-dense in H.
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Proof. For n ∈ N define

(3) Wn = knH = pn
0Zp0 × pn

1Zp1 × . . .× pn
n−1Zpn−1 ×

∞∏
i=n

Zpi
.

(Note that k0 = 1, so W0 = H.) Then {Wn : n ∈ N} forms a base of H at 0 consisting of
clopen subgroups. It is easy to see that each Wn may miss only finitely many members of S,
so S is a sequence converging to 0 in H.

Let us show that S is qc-dense in H. Let χ ∈ Ĥ and χ 6= 0. We need to prove that
χ(S) \ T+ 6= ∅. Being a continuous homomorphic image of the compact totally disconnected
group H, χ(H) is a closed totally disconnected subgroup of T. Therefore, χ(H) must be
finite. Hence kerχ is an open subgroup of H, and consequently it contains a subgroup Wn

for some n ∈ N. Without loss of generality we will assume that

(4) n = min{m ∈ N : Wm ⊆ kerχ}.
Since kerχ 6= H = W0 by our assumption, we have n ≥ 1, and so n− 1 ∈ N.

Claim: χ(kn−1v) 6= 0.

Proof. Assume the contrary. Then χ �〈kn−1v〉= 0. Since 〈v〉 is dense in H and Wn−1 is an open
subset of H, it follows that 〈v〉 ∩Wn−1 = 〈kn−1v〉 is dense in Wn−1. Now from χ �〈kn−1v〉= 0
and continuity of χ we conclude that χ �Wn−1= 0. This gives Wn−1 ⊆ kerχ, in contradiction
with (4). �

Since knv ∈ Wn ⊆ kerχ by (3) and (4), we have knχ(v) = χ(knv) = 0. That is, 〈χ(v)〉
is a cyclic group of order at most kn. Since χ(kn−1v) = kn−1χ(v) ∈ 〈χ(v)〉, the order of
the element χ(kn−1v) of T is also at most kn. Since χ(kn−1v) 6= 0 by claim, we can choose
an integer m ≤ kn such that χ(mkn−1v) = mχ(kn−1v) 6∈ T+. From (2) we conclude that
mkn−1v ∈ S, and so χ(S) \ T+ 6= ∅. �

An explicit qc-dense sequence in Q̂ converging to 0 can be found in [10, Lemma 4.7].

However, that sequence is not contained in Q̂a. In our next lemma we produce a qc-dense

sequence converging to 0 inside Q̂a.

Lemma 3.4. Q̂a contains a sequence converging to 0 that is qc-dense in Q̂.

Proof. We continue using notations from Lemma 3.3. Let K = R × H and u = (1, v) ∈ K.
Then the cyclic subgroup 〈u〉 of K is discrete and the quotient group C = K/〈u〉 is isomorphic

to Q̂ [7, §2.1]. Therefore, it suffices to prove that Ca contains a sequence converging to 0 that
is qc-dense in C.

Let π : K → C = K/〈u〉 be the quotient homomorphism. Since π is a local homeomor-
phism, every continuous map f : [0, 1] → C with f(0) = 0C can be lifted to a continuous map

f̃ : [0, 1] → K with f̃(0) = 0K and π ◦ f̃ = f . (A more general statement can be found in
[16, Lemma 1].) Therefore, Ca = π(Ka). Since H is zero-dimensional and R× {0} is arcwise
connected, one has Ka = R× {0}, and so Ca = π(R× {0}).

Define N = π({0}×H), and let f : C → C/N be the quotient homomorphism. By Lemma
3.3 and Fact 3.1, there exists a converging to 0 sequence S ′ in the subgroup 〈π(0, v)〉 of N
such that S ′ is qc-dense in N . As

π(0, v) = π((−1, 0) + (1, v)) = π(−1, 0) + π(u) = −π(1, 0) ∈ π(R× {0}) = Ca,
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one has S ′ ⊆ π(〈(0, v)〉) ⊆ Ca.
With T =

{
1
2n

: n ∈ N, n ≥ 1
}

define S ′′ = π(T × {0}) ⊆ π(R × {0}) = Ca. Clearly, S ′′ is
a sequence converging to 0. Since C/N ∼= K/(Z × H) ∼= T and the composed isomorphism
C/N → T sends f(S ′′) to ϕ(T ), from Example 3.2 we conclude that f(S ′′) is qc-dense in
C/N .

Since S ′ and S ′′ are sequences converging to 0 in C, so is X = S ′∪S ′′. By our construction,

X ⊆ Ca. So it remains only to prove that X is qc-dense in C. Suppose that χ ∈ Ĉ and

χ(X) ⊆ T+. Since χ �N∈ N̂ , χ �N (S ′) = χ(S ′) ⊆ χ(X) ⊆ T+ and S ′ is qc-dense in N , we

have χ �N= 0. Therefore, χ = ξ ◦ f for some ξ ∈ Ĉ/N . In particular, ξ(f(S ′′)) ⊆ ξ(f(X)) =
χ(X) ⊆ T+. Since f(S ′′) is qc-dense in C/N , it follows that ξ = 0. This gives χ = 0.
Therefore, X is qc-dense in C. �

4. The abelian case: Proofs of Theorems 2.1 and 1.3

The following definition is an adaptation to the abelian case of [9, Definition 4.5]:

Definition 4.1. Let {Gi : i ∈ I} be a family of abelian topological groups. For every i ∈ I let
Xi be a subset of Gi. Identifying each Gi with a subgroup of the direct product G =

∏
i∈I Gi

in the obvious way, define X = {0} ∪
⋃

i∈I Xi, where 0 is the zero element of H. We will call
X the fan of the family {Xi : i ∈ I} and will denote it by fani∈I(Xi, Gi).

The proofs of the following two lemmas are straightforward.

Lemma 4.2. [10, Lemmas 4.3 and 4.4] Let {Gi : i ∈ I} be a family of abelian topo-
logical groups, and let G =

∏
i∈I Gi. For every i ∈ I let Xi be a subset of Gi, and let

X = fani∈I(Xi, Gi). Then:

(i) if Xi is a sequence converging to 0 in Gi, then X is a super-sequence in G converging
to 0;

(ii) if Xi is a qc-dense subset of Gi for each i ∈ I, then X is qc-dense in G.

Lemma 4.3. ([9, Fact 4.3]; see [17, Fact 12] for the proof) Let π : H → G be a continuous
group homomorphism and S ⊆ H. Then:

(i) if S is a super-sequence, then so is π(S);
(ii) if S is a super-sequence converging to the identity eH of H and π(S) is infinite, then

π(S) is a super-sequence converging to the identity eG of G.

Lemma 4.4. For every cardinal κ > 0 there exists a super-sequence S ⊆ (Q̂κ)a converging to

0 that is qc-dense in Q̂κ and satisfies |S| ≤ max{κ, ω}.

Proof. Write Q̂κ as Q̂κ =
∏

α<κGα, where Gα is the α’s copy of Q̂. By Lemma 3.4, for every
α ∈ κ there is a sequence Sα in (Gα)a converging to 0 that is qc-dense in Gα. By Lemma

4.2(i), S = fanα∈κ(Xα, Gα) is a super-sequence in Q̂κ converging to 0. By Lemma 4.2(ii), S is

qc-dense in Q̂κ. Finally, note that S ⊆
⊕

α∈κ(Gα)a ⊆ (Q̂κ)a. �

Proof of Theorem 2.1. Let κ = w(G). Since G is infinite, κ ≥ ω. By [10, Theorem 3.3],

there exits a continuous surjective homomorphism π : Q̂κ → G.
(iii)→(i) Let S be as in the conclusion of Lemma 4.4. Then |π(S)| ≤ |S| ≤ w(G). Since

S is qc-dense in Q̂κ, π(S) is qc-dense in G by Fact 3.1. Since a finite set cannot be qc-
dense in an infinite compact group ([1]; this also follows from Theorem 1.6), π(S) must be
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infinite. By Lemma 4.3(ii), π(S) is a super-sequence converging to 0. Finally note that

π(S) ⊆ π(Q̂κ
a) ⊆ Ga.

(iii)→(ii) The connected metrizable group Q̂a is monothetic, so applying [9, Corollary

5.9] and [9, Fact 4.4] we conclude that (Q̂a)
κ contains a converging to 0 super-sequence X

topologically generating (Q̂a)
κ such that |X| ≤ σ, where σ = ω

√
κ. Since (Q̂a)

κ is dense in Q̂κ,

it follows that X topologically generates Q̂κ as well. Therefore, Y = π(X) is a super-sequence
(by Lemma 4.3(i)) that topologically generates G. Hence S = Y \ {eG} is a suitable set for G
by Remark 1.11. Clearly, s(G) ≤ |S| ≤ |Y | ≤ |X| ≤ σ. If κ > c, then s(G) = σ by Theorem
1.14, which gives |S| = σ. The remaining case κ ≤ c is settled easily by [15, Lemma 12.32].

(i)→(iii) and (ii)→(iii) Let S ⊆ Ga, and let H be the subgroup of G generated by S. If S is
a super-sequence that is qc-dense in G (as in case (i)), then H is dense in G by Fact 1.10. If
S is a a suitable set for G (as in case (i)), then H is dense in G by the definition of a suitable
set. Since H ⊆ Ga, it follows that Ga is dense in G as well. Thus G is connected. �

Proof of Theorem 1.3. We have G = Rn × K, where K is a compact connected group
[8, 15]. Since Rn is arcwise connected, one has Ga = Rn ×Ka. From Theorem 2.1 and Fact
1.5 we conclude that Ka determines K. Hence Ga = Rn ×Ka determines G = Rn ×K. �

5. The general case: Proofs of Theorems 2.2, 2.5 and 1.15

In the sequel we denote by H ′ the commutator subgroup of a group H.
Our next lemma shows that qc-density can be essentially studied in the abelian context.

Lemma 5.1. Let H be a topological group, and let G denote the quotient H/H ′, where H ′ is
the closure of H ′ in H. Let π : H → G denote the canonical map. Then a subset E of H is
qc-dense in H if and only if π(E) is qc-dense in G.

Proof. The “only if” part follows from Lemma 3.1. To prove the “if” part, assume that π(E)
is qc-dense in G, and let χ : H → T be a continuous homomorphism such that χ(E) ⊆ T+.
Since T is abelian and Hausdorff, H ′ ⊆ kerχ, so χ = ξ ◦ π for some character ξ : G → T.
Since ξ(π(E)) = χ(E) ⊆ T+ and π(E) is qc-dense in G, we conclude that ξ is trivial, and so
χ is trivial too. This proves that E is qc-dense in H. �

Recall that a group L is called perfect if L′ = L.

Corollary 5.2. Let L be a perfect topological group, G an abelian topological group and
H = G× L. Then a subset E of G is qc-dense in G if and only if the subset E × {eL} of the
group H is qc-dense in H.

Proof. Since H ′ = {0G} × L, we have H ′ = H ′ and G ∼= H/H ′ = H/H ′. Now the conclusion
of our corollary follows from Lemma 5.1 applied to the projection π : H → G. �

Example 5.3. Let T =
{

1
2n

: n ∈ N, n ≥ 1
}
∪ {0}. Assume that L is a finite simple non-

abelian group and G = T×L. Then S = ϕ(T )×{eL} is a qc-dense sequence in G converging
to eG. Indeed, since all simple non-abelian groups are perfect, this follows from Example 3.2
and Corollary 5.2.

Here we recall briefly some basic facts about the structure of compact connected groups
that will be used in the last three proofs. According to Levi-Mal′cev structure theorem [15,
Theorem 9.24], a compact connected group G satisfies

(5) G = c(Z(G)) G′.
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A semisimple group is a perfect compact connected group [15, Definition 9.5]. Every semisim-
ple group can be presented as a quotient of a product of simple compact Lie groups [15, The-
orem 9.19], so it is perfect and arc-wise connected. By Goto’s theorem [15, Theorem 9.2], the
commutator subgroup G′ of a compact connected group G is again compact and connected.
Moreover, G′ is semisimple [15, Corollary 9.6], hence G is perfect and G′ = G′

a.

Proof of Theorem 2.2. (i)→(iv) Let S ⊆ Ga be a suitable set for G. Then the subgroup
H of G generated by S is dense in G. Since H ⊆ Ga, it follows that Ga is dense in G as well.
Thus G is connected.

(iv)→(iii) Let us note first, that if c(Z(G)) is trivial, then G = G′ is semisimple, so by
Lemma 5.1 S = {eG} is qc-dense in G. This is why we assume from now on that c(Z(G)) is
non-trivial. Since this is a connected group, by Theorem 2.1, there exist a super-sequence S
convergent to eG in c(Z(G))a that qc-dense in c(Z(G)) with |S| ≤ w(c(Z(G))). By Fact 1.10,
S topologically generates c(Z(G)). Finally, from (5) we deduce that the surjective continuous
homomorphism ψ : G → G/G′ sends c(Z(G)) onto G/G′. Therefore, ψ(S) is qc-dense in
G/G′ by Fact 3.1. Now by Lemma 5.1 S is qc-dense in G.

(iii)→(ii) By Theorem 1.13 the subgroup {0} × L has a suitable set S0 ⊆ {0} × L. If
c(Z(G)) is trivial, this yields G = G′ = Ga, so by Lemma 5.1 S0 is qc-dense in G. If S0 is
infinite, we are done. Assume S0 is finite. There exists a continuous map f : [0, 1] → Ga such
that f(0) = eG and f(1) 6= eG, so we can easily choose an infinite sequence X0 in f([0, 1])
converging to 0. By Remark 1.11, X0 \ {eG} is an infinite suitable set contained in Ga = G.
Now S = (S0 ∪X0) \ {eG} is as required.

Let us assume now that c(Z(G)) is non-trivial. Then by (iii) there exists a super-sequenceX
in Ga convergent to eG that is qc-dense in G and that topologically generates c(Z(G)). Hence
by Remark 1.11, S1 = S0 ∪ {eG} ⊆ G′ is a super-sequence that topologically generates G′

and converges to eG whenever S0 is infinite. Then S = X ∪S1 is a super-sequence converging
to eG that is qc-dense in G and topologically generates G by (5). So S \ {eG} is an infinite
suitable set contained in Ga = G.

The implication (ii)→(i) is trivial. �

Proof of Theorem 1.15. Let G be a compact connected group. If w(G) ≤ c, then the proof
of Theorem 1.15 is very easy (see [15, Lemma 12.32]), so we will only deal with the remaining
difficult case w(G) > c. Define κ = w(G) and σ = ω

√
κ. Then s(G) = σ by Theorem 1.14(ii).

Applying implication (iii)→(ii) of Theorem 2.1, we conclude that c(Z(G))a contains a suitable
set S1 for c(Z(G)) of size ≤ σ. From Theorem 1.14(i) it follows that the compact connected

group G′ contains a suitable set S2 for G′ such that |S2| = s(G′) ≤ ω
√
w(G′) ≤ ω

√
w(G) = σ.

Now (5) yields that S = S1 ∪ S2 is a suitable set for G of size ≤ σ. It remains to note that
G′ ⊆ Ga, so S ⊆ Ga. �

Lemma 5.4. Suppose that N is a totally disconnected closed subgroup of a compact connected
abelian group K. Then w(K/N) = w(K).

Proof. Let X be the (discrete) Pontryagin dual of K and Y = {χ ∈ X : χ(N) ⊆ {0}} the
annihilator of N in X. By the standard properties of Pontryagin duality, the Pontryagin dual
of K/N is isomorphic to Y and the Pontryagin dual of N is isomorphic to X/Y . Since N
is totally disconnected, the quotient group X/Y is torsion [8, Corollary 3.3.9]. Since K is
connected, X is torsion-free [8, Corollary 3.3.8]. This yields |X| = |Y |. Finally note that
w(K) = |X| and w(K/N) = |Y | by [8, Exercise 3.8.23]. �
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Proof of Theorem 2.5. First of all, let us show that

(6) qcw(G/G′) = w(G/G′).

Indeed, if G = G′, then (6) trivially holds. Otherwise G/G′ must be infinite, being a non-
trivial continuous image of the compact connected group G. Now Theorem 1.6 applied to the
compact abelian group G/G′ gives (6).

According to [15, Theorem 9.24], ∆ = c(Z(G)) ∩ G′ is totally disconnected. Hence
w(c(Z(G)))/∆) = w(c(Z(G))) by Lemma 5.4. Note that (5) implies the isomorphism G/G′ ∼=
c(Z(G))/∆, which gives

(7) w(G/G′) = w(c(Z(G))).

From Fact 3.1 and Lemma 5.1 it follows that qcw(G/G′) ≤ qcw(G). Combining this with
(6) and (7), one gets w(c(Z(G)) ≤ qcw(G). The converse inequality qcw(G) ≤ w(c(Z(G))
follows from item (iii) of Theorem 2.2. �

References

[1] L. Außenhofer, Contributions to the duality theory of abelian topological groups and to the theory of
nuclear groups. Diss. Math. CCCLXXXIV. Warsaw, 1999.

[2] L. Außenhofer, A duality property of an uncountable product of Z, Math. Z. 257 (2007) 231–237.
[3] L. Außenhofer, On the arc component of a locally compact abelian group, Math. Z. 257 (2007) 239–250.
[4] M. J. Chasco, Pontryagin duality for metrizable groups, Arch. Math. (Basel) 70 (1998) 22–28.
[5] W. W. Comfort, S. U. Raczkowski and F. J. Trigos-Arrieta, The dual group of a dense subgroup,

Czechoslovak Math. J. 54 (129) (2004) 509–533.
[6] D. Dikranjan and L. De Leo, Countably infinite quasi-convex sets in some locally compact abelian groups,

Topol. Appl., to appear.
[7] D. Dikranjan and C. Milan, Dualities of locally compact modules over the rationals, J. Algebra 256 (2002)

433–466.
[8] D. Dikranjan, Iv. Prodanov and L. Stoyanov, Topological Groups: Characters, Dualities and Minimal

Group Topologies, Pure and Applied Mathematics, vol. 130, Marcel Dekker Inc., New York-Basel (1989).
[9] D. Dikranjan and D. Shakhmatov, Weight of closed subsets topologically generating a compact group,

Math. Nachr. 280 (2007) 505–522.
[10] D. Dikranjan and D. Shakhmatov, Quasi-convex density and determining subgroups of compact abelian

groups, submitted (available as ArXiv preprint no. arXiv:0807.3846v3).
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