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This article contains open problems and questions covering the following top-
ics: the dimension theory of topological groups, pseudocompact and countably
compact group topologies on Abelian groups, with or without nontrivial conver-
gent sequences, categorically compact groups, sequentially complete groups, the
Markov–Zariski topology, the Bohr topology, and transversal group topologies. All
topological groups considered in this chapter are assumed to be Hausdorff.

1. Dimension theory of topological groups

We highlight here our favourite problems from the dimension theory of topo-
logical groups.

Problem 1 ([1]). Is indG = Ind G = dim G for a topological group G with a 884?

countable network?

The classical result of Pasynkov says that indG = IndG = dimG for a (lo-
cally) compact group G [50].

Question 2 ([52]). Is ind G = IndG = dim G for a σ-compact group G? 885?

This is a delicate question since there exists an example of a precompact
topological group G such that G is a Lindelöf Σ-space, dimG = 1 but indG =
IndG = ∞ [52, 53]. Even the following particular case of Question 2 seems to be
open.

Question 3 (M.J. Chasco). If a topological group G is a kω-space, must ind G = 886?

IndG = dim G?

Recall that X is a kω-space provided that there exists a countable family
{Kn : n ∈ ω} of compact subspaces of X such that a subset U of X is open in X
if and only if U ∩ Kn is open in Kn for every n ∈ ω.

Question 4 ([53]). Is ind G = IndG for a Lindelöf group G? 887?

The answer to Question 4 is positive if G is a Lindelöf Σ-space (in particular,
a σ-compact space), so only the inequality indG ≤ dim G must be proved in order
to answer Questions 2 or 3 positively.

The first named author was partially supported by the project MIUR 2005 “Anelli

commutativi e loro moduli: teoria moltiplicativa degli ideali, metodi omologici e

topologici.” The second named author acknowledges partial financial support from the

Grant-in-Aid for Scientific Research no. 155400823 by the Japan Society for the

Promotion of Science.

389



390 §41. Dikranjan and Shakhmatov, Structure theory of topological groups

Problem 5 (Old problem). If H is a subgroup of a topological group G, is then888?

dim H ≤ dim G?

The answer is positive if H is R-factorizable [60] (in particular, precom-
pact [54]).

Question 6 ([55]). Suppose that X is a separable metric space with dim X ≤ n.889?

Is there a separable metric group G that contains X as a closed subspace such that
dim G ≤ 2n + 1?1

Without the requirement that X is closed in G the answer is positive due
to the Nöebeling–Pontryagin theorem: X is a subspace of the topological group
R2n+1. The separability in the above question is essential: There exists a metric
space X of weight ω1 such that dim X = 1 and X cannot be embedded into any
finite-dimensional topological group [42].

The next question is the natural group analogue of the classical result about
the existence of the universal space of a given weight and covering dimension.

Question 7 ([55]). Let τ be an infinite cardinal and n be a natural number. Is890?

there an (Abelian) topological group Hτ,n with dim Hτ,n ≤ n and w(Hτ,n) ≤ τ
such that every (Abelian) topological group G satisfying dim G ≤ n and w(G) ≤ τ
is topologically and algebraically isomorphic to a subgroup of Hτ,n?

The special case of the above question when τ = ω is due to Arhangel′skĭı [1].
Transfinite inductive dimensions have many peculiar properties in topological

groups [56]. For example, (i) if G is a locally compact group having small transfi-
nite inductive dimension trind(G), then G must be finite-dimensional, and (ii) if G
is a separable metric group having large transfinite inductive dimension trInd(G),
then G must be finite-dimensional as well. It is not clear if (ii) holds for trind(G)
instead of trInd(G):

Problem 8 ([56]). For which ordinals α does there exist a separable metric group891?

Gα whose small transfinite inductive dimension trind(Gα) equals α?

The reader is referred to [41, 55, 56] for additional open problems in the
dimension theory of topological groups.

2. Pseudocompact and countably compact group topologies on

Abelian groups

We denote by C the class of Abelian groups that admit a countably compact
group topology, and use P to denote the class of Abelian groups that admit a
pseudocompact group topology.

The next two problems are the most fundamental problems in this area:

1We were kindly informed by T. Banakh that Question 6 has been recently answered in
the negative in [2]: There exists a 1-dimensional separable metric space (namely, the hedgehog
with countably many spines) which cannot be embedded into any finite-dimensional topological
group as a closed subspace.
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Problem 9 ([19]). Describe the algebraic structure of members of the class P. 892?

Problem 10. Describe the algebraic structure of members of the class C. 893?

Despite a substantial progress on Problem 9 for particular classes of groups
achieved in [7, 8, 16–18], the general case is still very far from the final solution.
(We refer the reader to [4] for further reading on this topic.)

Let G be an Abelian group. As usual r(G) denotes the free rank of G. For ev-
ery natural number n ≥ 1 define G[n] = {g ∈ G : ng = 0} and nG = {ng : g ∈ G}.
Every group G from the class C satisfies the following two conditions [16, 18, 26]:

PS: Either r(G) ≥ c or G = G[n] for some n ∈ ω \ {0}.
CC: For every pair of integers n ≥ 1 and m ≥ 1 the group mG[n] is either

finite or has size at least c.

It is totally unclear if these are the only necessary conditions on a group from
the class C:

Question 11. Is it true that an Abelian group G belongs to C if and only if G 894?

satisfies both PS and CC?

Question 12 ([22]). Is it true in ZFC that an Abelian group G of size at most 2c
895?

belongs to C if and only if G satisfies both PS and CC?

Question 12 has a positive consistent answer [22].
Assuming MA, there exist countably compact Abelian groups G, H such that

G × H is not countably compact [31]. Therefore, our next question could be
viewed as a weaker form of productivity of countable compactness in topological
groups that still has a chance for a positive answer in ZFC.

Question 13 ([19]). If G and H belong to C, must then their product G×H also 896?

belong to C?

In fact, one can consider a much bolder hypothesis:

Question 14 ([19]). Is C closed under arbitrary products? That is, if Gi belongs 897?

to C for each i ∈ I, does then
∏

i∈I Gi belong to C?

The next question provides a slightly less bold conjecture:

Question 15 ([19]). (i) Is there a cardinal τ having the following property: A 898–899?

product
∏

i∈I Gi belongs to C provided that
∏

j∈J Gj belongs to C whenever J ⊆ I

and |J | ≤ τ?
(ii) Does the statement in item (i) hold true when τ = c or τ = 2c?

Of course Question 14 simply asks if the statement in item (i) of Question 15
holds true when τ = 1. It might be worth noting that Question 15 is motivated
by a theorem of Ginsburg and Saks [35]: A product

∏
i∈I Xi of topological spaces

Xi is countably compact provided that
∏

j∈J Gj is countably compact whenever

J ⊆ I and |J | ≤ 2c.
A partial positive answer to Question 14 has been given in [20]: It is consistent

with ZFC that, for every family {Gi : i ∈ I} of groups with 2|I| ≤ 2c such that
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Gi belongs to C and |Gi| ≤ 2c for each i ∈ I, the product
∏

i∈I Gi also belongs
to C. A similar result for smaller products and smaller groups has been proved
in [26, Theorem 5.6] under the assumption of MA. In particular, if the groups
G and H in Question 13 are additionally assumed to be of size at most 2c, then
the positive answer to this restricted version of Question 13 is consistent with
ZFC [20].

Recall that an Abelian group G is algebraically compact provided that one
can find an Abelian group H such that G × H admits a compact group topology.
Algebraically compact groups form a relatively narrow subclass of Abelian groups
(for example, the group Z of integers is not algebraically compact). On the other
hand, every Abelian group G is algebraically pseudocompact ; that is, one can find
an Abelian group H such that G × H ∈ P [18, Theorem 8.15]. It is unclear if
this result can be strengthened to show that every Abelian group is algebraically
countably compact :

Question 16 ([22]). Given an Abelian group G, can one always find an Abelian900?

group H such that G × H ∈ C?

Recall that an Abelian group G is divisible provided that for every g ∈ G and
each positive integer n one can find h ∈ G such that nh = g. An Abelian group
is reduced if it does not have non-zero divisible subgroups. Every Abelian group
G admits a unique representation G = D(G) × R(G) into the maximal divisible
subgroup D(G) of G (the so-called divisible part of G) and the reduced subgroup
R(G) ∼= G/D(G) of G (the so-called reduced part of G). It is well-known that an
Abelian group G admits a compact group topology if and only if both its divisible
part D(G) and its reduced part R(G) admit a compact group topology. However,
there exist groups G and H that belong to P but neither D(G) nor R(H) belong
to P [18, Theorem 8.1(ii)]. This was strengthened in [22, 26] as follows: It is
consistent with ZFC that there exist groups G′ and H ′ from the class C such that
neither D(G′) nor R(H ′) belong to P. These results leave open the following:

Problem 17 ([19]). In ZFC, give an example of groups G and H from the class901–902?

C such that:

(i) D(G) does not belong to C (or even P),
(ii) R(H) does not belong to C (or even P).

Even the following question is also open:

Question 18 ([19]). Let G be a group in C.903–904?

(i) Is it true that either D(G) or R(G) belongs to C?
(ii) Must either D(G) or R(G) belong to P?

We note that item (ii) of the last question is a strengthening of Question 9.8
from [18]. Even consistent results related to the last question are currently un-
available.

An Abelian group G is torsion provided that G =
⋃
{G[n] : n ∈ ω, n ≥ 1},

and is torsion-free provided that
⋃
{G[n] : n ∈ ω, n ≥ 1} = {0}.
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Question 19 ([22]). Is there a torsion Abelian group that is in P but not in C? 905?

Question 20 ([22]). Is there a torsion-free Abelian group that is in P but not 906?

in C?

It is consistent with ZFC that a group Questions 19 and 20 must have size
strictly bigger than 2c [22].

Problem 21 ([22]). (i) Describe in ZFC the algebraic structure of separable 907–908?

countably compact Abelian groups.
(ii) Is it true in ZFC that an Abelian group G admits a separable countably

compact group topology if and only if |G| ≤ 2c and G satisfies both PS and CC?

A consistent positive solution to Problem 21(ii) is given in [22].

3. Properties determined by convergent sequences

It is well-known that infinite compact groups have (lots of) nontrivial conver-
gent sequences. There exists an example (in ZFC) of a pseudocompact Abelian
group without nontrivial convergent sequences [58]. While there are plenty of
consistent examples of countably compact groups without nontrivial convergent
sequences [10, 22, 26, 31, 39, 46, 59, 63], the following remains a major open
problem in this area:

Problem 22. Does there exist, in ZFC, a countably compact group without non- 909?

trivial convergent sequences?

Recall that a (Hausdorff) topological group G is minimal if G does not admit
a strictly weaker (Hausdorff) group topology. Even though a countably compact,
minimal Abelian group need not be compact, it can be shown that it must contain
a nontrivial convergent sequence. More generally, one can show that an infinite,
countably compact, minimal nilpotent group has a nontrivial convergent sequence.
Whether “nilpotent” can be dropped remains unclear.

Problem 23. Must an infinite, countably compact, minimal group contain a non- 910?

trivial convergent sequence?

The next question may be considered as a countably compact (or pseudocom-
pact) heir of the fact that compact groups have nontrivial convergent sequences
that still has a chance of a positive answer in ZFC.

Question 24 ([22]). Let G be an infinite group admitting a countably compact (or 911?

a pseudocompact) group topology. Does G have a countably compact (respectively,
pseudocompact) group topology that contains a nontrivial convergent sequence?

The next question goes in the opposite direction:

Question 25 ([22]). (i) Does every group G admitting a pseudocompact group 912–913?

topology have also a pseudocompact group topology without nontrivial convergent
sequences (without infinite compact subsets)?
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(ii) Does every group G admitting a countably compact group topology have
also a countably compact group topology without nontrivial convergent sequences
(without infinite compact subsets)?

Question 25(ii) has a consistent positive answer in the special case when |G| ≤
2c [22]. The part “without nontrivial convergent sequences” of item (ii) of our next
question has appeared in [10].

Question 26. (i) When does a compact Abelian group G admit a proper dense914–916?

subgroup H without nontrivial convergent sequences? without infinite compact
subsets?

(ii) When does a compact Abelian group G admit a proper dense pseudocompact
subgroup H without nontrivial convergent sequences? without infinite compact
subsets?

(iii) When does a compact Abelian group G admit a proper dense countably
compact subgroup H without nontrivial convergent sequences? without infinite
compact subsets?

In GCH, a precompact group H such that w(H) < w(H)ω has a nontrivial
convergent sequence [47]. Thus w(G) = w(G)ω is a necessary condition for the
group G to have a subgroup H as in Question 26. This condition alone is not
sufficient: If K =

∏
n∈ω Z2n and τ is an infinite cardinal, then every dense sub-

group H of G = Kτ has a nontrivial convergent sequence [10] (here Zm denotes
the cyclic group Z/mZ). Many partial results towards solution of Question 26 are
given in [10, 33].

Question 27. (i) If a compact Abelian group has a proper dense pseudocompact917–918?

subgroup without nontrivial convergent sequences, does it also have a proper dense
pseudocompact subgroup without infinite compact subsets?

(ii) If a compact Abelian group has a proper dense countably compact subgroup
without nontrivial convergent sequences, does it also have a proper dense countably
compact subgroup without infinite compact subsets?

Now we relax item (ii) to get the following:

Question 28. Is the existence of a countably compact Abelian group without non-919?

trivial convergent sequences equivalent to the existence of a countably compact
Abelian group without infinite compact subsets?

In connection with the last four questions we should note that, under MA, an
infinite compact space of size at most c contains a nontrivial convergent sequence.

A topological group G is called sequentially complete [24, 25] if G is sequen-
tially closed in every (Hausdorff) group that contains G as a topological subgroup.
Obviously, every topological group without nontrivial convergent sequences is se-
quentially complete. Moreover, sequential completeness is preserved under taking
arbitrary direct products and closed subgroups [24].

Denote by S the class of closed subgroups of the products of countably compact
Abelian groups. Since countably compact groups are sequentially complete and
precompact, every group from the class S is sequentially complete and precompact.



Categorically compact groups 395

Question 29 ([25]). (i) Does every precompact sequentially complete Abelian 920–921?

group G belong to S?
(ii) What is the answer to (i) if one additionally assumes that |G| ≤ c?

Every precompact Abelian group is both a quotient group and a continuous
isomorphic image of some sequentially complete precompact Abelian group [25,
Theorem B]. This motivates the following:

Question 30 ([25]). Is every precompact Abelian group G: 922–924?

(i) a quotient of a group from S?
(ii) a continuous homomoprhic image of group from S?
(iii) a continuous isomorphic image of group from S?

Item (iii) of Question 30 has a positive answer when |G| ≤ c [25, Theorem A],
and more generally, if |G| is a non-measurable cardinal [61].

4. Categorically compact groups

A topological group G is categorically compact (briefly, c-compact) if for each
topological group H the projection G×H → H sends closed subgroups of G×H
to closed subgroups of H [29]. Obviously, compact groups are c-compact. To
establish the converse is the main open problem in this area:

Problem 31. (i) Are c-compact groups compact? 925–926?

(ii) Are nondiscrete c-compact groups compact?

Item (i) has appeared in [29]. Two related weaker versions are also open:

Question 32. Is every (nondiscrete) c-compact group minimal? 927?

Question 33. Does every nondiscrete c-compact group have a nontrivial conver- 928?

gent sequence?

A positive answer to Problem 31 in the Abelian case makes recourse to the
deep theorem of precompactness of Prodanov and Stoyanov [15]. Similar to (usual)
compactness, taking products, closed subgroups and continuous homomorphic im-
ages preserves c-compactness [29] (a proof of the productivity of c-compactness
was obtained independently also in [3] in a much more general setting). Therefore,
a positive answer to Question 32 would imply that every closed subgroup H of a
c-compact group is totally minimal , i.e., all quotient groups of H are minimal. At
present we only know that separable c-compact groups are totally minimal (and
complete) [29].

Lukacs [45] resolved Problem 31 positively for maximally almost periodic
groups. Moreover, he showed that it suffices to solve this problem only for second
countable groups (analogously, the case of locally compact SIN-groups, is reduced
to that of countable discrete groups [45]). (Recall that a SIN-group is a topological
group for which the left and right uniformities coincide.) According to [45], in
Question 33 it suffices to consider only the nondiscrete c-compact groups that have
no nontrivial continuous homomorphisms into compact groups.
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Connected locally compact c-compact groups are compact [29]. Hence the
connected locally compact group SL2(R) is not categorically compact, although it
is separable and totally minimal [15]. Nothing is known about c-compactness of
disconnected locally compact groups. In fact, even the discrete case is wide open:

Question 34 ([29]). Is every discrete c-compact group finite (finitely generated,929?

of finite exponent, countable)?

One can prove that a countable discrete group G is c-compact if and only if
every subgroup of G is totally minimal [29]. Therefore, the negative answer to
this question is equivalent to the existence of an infinite group G such that no
subgroup or quotient group of G admits a nondiscrete Hausdorff group topology
(this is a stronger version of the famous Markov problem on the existence of a
countably infinite group without nondiscrete Hausdorff group topologies).

A group G is h-complete if all continuous homomorphic images of G are com-
plete, and G is hereditarily h-complete if every closed subgroup of G is h-complete.
c-compact groups are hereditarily h-complete, and the inverse implication holds
for SIN-groups (in particular, Abelian groups) [29].

Both c-compactness and h-completeness are stable under products, and h-
completeness also has the the so-called “three space property”: If K is a closed
normal subgroup of a topological group G such that both K and the quotient
group G/K are h-complete, then G is h-complete. This leaves open:

Question 35 ([29, Question 4.3]). If K is a closed normal subgroup of a topolog-930?

ical group G such that both K and the quotient group G/K are c-compact, must
G be c-compact as well?

Nilpotent (in particular, Abelian) h-complete groups are compact, while solv-
able c-compact groups are compact [29]. This motivates the following:

Question 36 ([29, Question 3.13]). Are solvable h-complete groups c-compact?931?

5. The Markov–Zariski topology

According to Markov [48], a subset S of a group G is called:

(a) elementary algebraic if there exist an integer n > 0, a1, . . . , an ∈ G and
ε1, . . . , εn ∈ {−1, 1} such that

S = {x ∈ G : xε1a1x
ε2a2 . . . an−1x

εn = an},

(b) algebraic if S is an intersection of finite unions of elementary algebraic
subsets,

(c) unconditionally closed if S is closed in every Hausdorff group topology
of G,

(d) potentially dense if G admits a Hausdorff group topology T on G such
that S is dense in (G, T ).

The family of algebraic subsets of a group G coincides with the family of
closed subsets of a T1 topology ZG on G, called the Zariski topology . The family of
unconditionally closed subsets of G coincides with the family of closed subsets of a
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T1 topology MG on G, namely the infimum (taken in the lattice of all topologies on
G) of all Hausdorff group topologies on G. We call MG the Markov topology of G.
Analogously, let PG be the infimum of all precompact Hausdorff group topologies
on G (if G admits no such topologies let PG denote the discrete topology of G). It
seems natural to call PG the precompact Markov topology of G. Note that (G, ZG),
(G, MG) and (G, PG) are quasi-topological groups, i.e., the inversion and shifts
are continuous.

Clearly, ZG ⊆ MG ⊆ PG. If G is Abelian, then ZG = MG = PG [21]. Markov
has attributed the equality ZG = MG in the Abelian case to Perel′man but the
proof has never appeared in print. Another proof was recently announced by
Sipacheva [41]. In the particular case when G is almost torsion-free2 the equality
ZG = MG was earlier proved in [62].

Problem 37 ([48]). Does ZG = MG hold true for an arbitrary group G? 932?

The answer is positive when G is countable [48]. A consistent counterexample
to this question was announced quite recently by Sipacheva [57] (see also [41]).

Let M denote the class of groups G with ZG = MG.

Question 38. For which infinite cardinals τ does the permutation group S(τ) of 933?

a set of size τ belong to M?

The answer is positive for τ = ω [23].

Question 39. For which uncountable cardinals τ does the free group of rank τ 934?

belong to M?

Question 40. (i) Is M closed under taking subgroups? In particular, do all 935–936?

subgroups of S(ω) belong to M?
(ii) Is M closed under taking (finite) direct products?

Question 41. (i) What is the minimal cardinality of a group G such that ZG 6= 937–939?

MG?
(ii) Is c such a cardinality in ZFC?
(iii) Is ω1 such a cardinality in ZFC?

Let G be a group and T be any Hausdorff group topology on G. Then MG ⊆ T ,
and therefore the T -closure of a subset of G must be contained in its MG-closure.
In other words, the MG-closure of a given set S ⊆ G is the biggest subset of G
that one could possibly hope to attain by taking the closure of S in any Hausdorff
group topology on G. This naturally leads to a question whether the MG-closure
of S can actually be realized by taking the closure of S in some Hausdorff group
topology on G.

Question 42. Let G be a group of size at most 2c and E a countable family of 940?

subsets of G. Can one find a Hausdorff group topology TE on G such that the
TE -closure of every E ∈ E coincides with its MG-closure?

2An Abelian group G is almost torsion-free if G[n] is finite for every n > 1.
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For an Abelian group G the answer is positive, and in fact the topology TE in
this case can be chosen to be precompact [21].

The counterpart of Question 42 for ZG instead of MG has a negative (consis-
tent) answer. Indeed, let G be an infinite group such that ZG 6= MG and MG is
discrete. (The recent example of Sipacheva [57] would do.) Let e be the unit ele-
ment of G. Then G \ {e} cannot be ZG-closed. Indeed, if it were, then {e} would
be ZG-open, and so by homogeneity of ZG, the topology ZG would be discrete,
implying ZG = MG, a contradiction. So the ZG-closure of G \ {e} must coincide
with G. On the other hand, the only Hausdorff group topology T on G is the
discrete topology, and so the T -closure of G \ {e} is G \ {e}.

Let us consider now the counterpart of Question 42 for PG instead of MG.

Question 43. Let G be a group of size at most 2c having at least one precompact941?

Hausdorff group topology, and let E be a countable family of subsets of G. Can
one find a precompact Hausdorff group topology TE on G such that the TE -closure
of every E ∈ E coincides with its PG-closure?

Again, for an Abelian group G the answer is positive [21].
Thereafter, we consider only Abelian groups and refer to the three equivalent

topologies ZG = MG = PG as the Markov–Zariski topology , denoting it by TG.
For an infinite Abelian group G, TG is neither Hausdorff, nor a group topology
on G, but still has various nice properties, e.g., the space (G, TG) is hereditarily
compact, hereditarily separable and Fréchet–Urysohn, moreover it has only finitely
many connected components, and each component is an irreducible space [21].

Problem 44. Let G be an Abelian group with |G| ≤ 2c and E a family of subsets942?

of G with |E| < 2|G|. Does there exist a precompact Hausdorff group topology TE
on G such that the TE -closure of each E ∈ E coincides with its TG-closure?

As was mentioned before, the answer is positive for countable families E [21].
Moreover, it was shown that if |G| ≤ c, one can choose the approximating topology
TE to be even metric.

The inequality |E| < 2|G| in the above problem is essential. Indeed, let G be
an infinite Abelian group. If one takes as E the family of all subsets of G, then
the existence of a Hausdorff group topology TE on G such that the TE -closure of
each E ∈ E coincides with its TG-closure would obviously imply that TE = TG.
Thus TG would become Hausdorff, a contradiction.

The restriction on the cardinality of the group G in Questions 42, 43 and
Problem 44 is obviously necessary since the closure of a countable set in a Hausdorff
topology cannot exceed 2c.

The problem of characterization of the potentially dense subsets S of a group
G goes back to Markov [48] who proved that every infinite subset of Z is potentially
dense. This was extended in [62] to Abelian groups G of size ≤ c that are either
of prime exponent or almost torsion-free. Tkachenko and Yaschenko asked in [62]
whether the restriction |G| ≤ c can be relaxed to |G| ≤ 2c. To clarify better the
problem, let us drop all additional restrictions on the Abelian group G. Obviously,
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if S is potentially dense in G, then |G| ≤ 22|S|

and S must be TG-dense in G. It
is not clear if these two conditions are not only necessary but also sufficient for
potential density.

Question 45. Let G be an Abelian group and let S be an infinite subset of G 943–944?

such that |G| ≤ 22|S|

and S is TG-dense in G.

(i) Is S potentially dense in G?
(ii) Does there exist a Hausdorff precompact group topology T such that S is

T -dense in G?

A positive answer to both items of this question in the case of a countable
set S has been given in [21] thereby providing a positive answer to the above
mentioned question from [62].

6. Bohr topologies of Abelian groups

Let G be an Abelian group. Following E. van Douwen [32], we denote by G#

the group G equipped with the Bohr topology, i.e., the initial topology with respect
to the family of all homomorphisms of G into the circle group T. It is a well known
fact, due to Glicksberg (see also [34] in this volume), that G# has no infinite com-
pact subsets (in particular, no nontrivial convergent sequences). Therefore, G# is
always sequentially complete. For future reference, we mention two fundamental
properties of the Bohr topology for arbitrary Abelian groups G, H:

(i) the Bohr topology of G × H coincides with the product topology of
G# × H#;

(ii) if H is a subgroup of G, then H is closed in G# and its topology as a
topological subgroup of G# coincides with that of H#.

E. van Douwen [49] posed the following challenging problem (see also [34]): If
G and H are Abelian groups of the same size, must G# and H# be homeomorphic?
A negative solution was obtained in [43] and independently, in [30]: (Vω

p )# and

(Vω
q )# are not homeomorphic for different primes p and q. (For every positive

integer m and a cardinal κ, Vκ
m denotes the direct sum of κ many copies of the

group Zm.) Motivated by this, let us call a pair G, H of infinite Abelian groups:

(1) Bohr-homeomorphic if G# and H# are homeomorphic,
(2) weakly Bohr-homeomorphic if G# can be homeomorphically embedded

into H# and H# can also be homeomorphically embedded into G#.

Obviously, Bohr-homeomorphic groups are weakly Bohr-homeomorphic, and
the status of the converse implication is totally unclear (see Question 49(ii)). As we
shall see in the sequel, weak Bohr-homeomorphism provides a more flexible tool for
studying the Bohr topology than the more rigid notion of Bohr-homeomorphism,
e.g, (Vω

p )# and (Vω
q )# are not even weakly Bohr-homeomorphic for different primes

p and q.
If G# homeomorphically embeds into H# and H is a bounded torsion group,

then G must also be a bounded torsion group [37]. In particular, boundedness
is invariant under weak Bohr-homeomorphisms, i.e., if G is a bounded Abelian
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group and the pair G, H are weakly Bohr-homeomorphic, than H must be bounded.
Therefore, when studying weak Bohr-homeomorphisms (and thus Bohr-homeomor-
phisms), without any loss of generality whatsoever, one can consider completely
separately bounded torsion Abelian groups and non-bounded Abelian groups.

We start first with the class of bounded torsion Abelian groups. According to
Prüfer’s theorem, every infinite bounded group has the form

∏n

i=1 Vκi

mi
for certain

integers mi > 0 and cardinals κi. For this reason, and in view of items (i) and (ii),
the study of the Bohr topology of the bounded Abelian groups can be focused on
the groups Vκ

m.
For bounded Abelian groups G, H the following two algebraic conditions play

a prominent role.

(3) |mG| = |mH| whenever m ∈ N and |mG| · |mH| ≥ ω.
(4) eo(G) = eo(H) and rp(G) = rp(H) for all p with rp(G) + rp(H) ≥ ω,

where eo(G) is the essential order of G [9, 37], i.e., the smallest positive
integer m with mG finite.

Since a pair G, H satisfies (3) iff each one of these groups has a finite-index
subgroup that is isomorphic to a subgroup of the other [9], we call such pairs of
bounded Abelian groups G and H weakly isomorphic [9]. By (ii), weakly isomor-
phic bounded Abelian groups are weakly Bohr-homeomorphic. According to [9],
weakly Bohr-homeomorphic bounded Abelian groups satisfy (4), i.e.,

weakly isomorphic ⇒ weakly Bohr-homeomorphic ⇒ (4).

Let us discuss the opposite implications. For countable Abelian groups G, H the
second part of (4) becomes vacuous, while eo(G) = eo(H) yields that G, H are
weakly isomorphic. Analogously, one can see that (4) for groups of square-free
essential order implies weak isomorphism and Bohr-homeomorphism. Hence all
four properties (1)–(4) coincide for bounded Abelian groups that have square-free
essential order [9, 37]. Therefore, the invariant eo(G) alone allows for a complete
classification (up to Bohr-homeomorphism) of all bounded Abelian groups of this
class.

The situation changes completely even for the simplest uncountable bounded
Abelian groups of essential order 4. Indeed, G = V

ω1

4 and H = V
ω1

2 × Vω
4 are not

weakly isomorphic, because ω1 = |2G| > |2H| = ω. However, we do not know
whether these groups are weakly Bohr-homeomorphic:

Question 46. Can (Vω1

4 )# be homeomorphically embedded into (Vω1

2 × Vω
4 )#?945?

Here is the question in the most general form:

Question 47. Given a cardinal κ ≥ ω and an integer s > 1, are Vκ
ps and Vκ

p ×Vω
ps946?

weakly Bohr-homeomorphic? Can this depend on p?

If the answer to Question 47 is positive for all p, then bounded Abelian groups
G and H would be weakly Bohr-homeomorphic if and only if (4) holds.

The next question is an equivalent form of the strongest negative answer to
Question 47.
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Question 48. Assume that p is a prime number, k > 1 is an integer, κ and λ 947?

are infinite cardinals such that (Vκ
pk)# can be homeomorphically embedded into

(Vκ
pk−1 × Vλ

pk)#. Must then inequality λ ≥ κ hold?

Note that a positive answer to Question 48 answers negatively Questions 46
and 47.

The countable groups Vω
4 and Vω

2 ×Vω
4 are obviously weakly isomorphic, hence

weakly Bohr-homeomorphic (see the discussion above).

Question 49. (i) ([43]) Are Vω
4 and Vω

2 × Vω
4 Bohr-homeomorphic? 948–949?

(ii) Are weakly Bohr-homeomorphic bounded groups always Bohr-homeomorphic?

Question 50. Suppose that G and H are bounded Abelian groups such that G#
950?

homeomorphically embeds into H#. Does there exist a subgroup G′ of G of finite
index that algebraically embeds into H?

Note that a positive answer to this question would imply, in particular, that
weak Bohr-homeomorphism coincides with weak isomorphism. Hence a positive
answer to this question would imply a positive answer to Question 48.

Now we leave the bounded world and turn to the class of non-bounded groups.
According to Hart and Kunen [40], two Abelian groups G and H are almost
isomorphic if G and H have isomorphic finite index subgroups. This definition
is motivated by the fact that almost isomorphic Abelian groups are always Bohr-
homeomorphic [40]. The converse implication fails. Indeed, Q and Q/Z × Z are
Bohr-homeomorphic [6], and yet these groups are not almost isomorphic. It is
nevertheless unclear if the reverse implication holds for bounded groups.

Question 51 ([43]). Are Bohr-homeomorphic bounded Abelian groups almost iso- 951?

morphic?

The question on whether the pairs Z, Z2 and Z, Q are Bohr-homeomorphic is
raised in [5, 34]. Let us consider here the version for weak Bohr-homeomorphisms:

Question 52. (i) Are Z and Q weakly Bohr-homeomorphic? 952–953?

(ii) Are Z and Q/Z (weakly) Bohr-homeomorphic?

A positive answer to item (i) of Question 52 would yield that all torsion-free
Abelian groups of a fixed finite free rank are weakly Bohr-homeomorphic. If both
items have a positive answer, then the weak Bohr-homeomorphism class of Z#

would comprise the class of all Abelian groups G of finite rank3 such that either
G is non-torsion or G contains a copy of the group Q/Z. (In particular, all finite
powers of Z, Q and Q/Z along with their finite products would become weakly
Bohr-homeomorphic.)

Many nice properties of Z# can be found in [44]. For a fast growing sequence
an in Z# the range is a closed discrete set of Z# (see [34] for further properties of
the lacunary sets in Z#), whereas for a polynomial function n 7→ an = P (n) the
range has no isolated points [44, Theorem 5.4]. Moreover, the range P (Z) is closed

3I.e., there exists n ∈ ω such that r0(G) ≤ n and |G[p]| ≤ pn for every prime p.
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when P (x) = xk is a monomial. For quadratic polynomials P (x) = ax2 + bx + c
(a, b, c ∈ Z, a 6= 0) the situation is already more complicated: the range P (Z) is
closed iff there is at most one prime that divides a, but does not divide b [44,
Theorem 5.6]. This leaves open the general question.

Problem 53. Characterize the polynomials P (x) ∈ Z[x] such that P (Z) is closed954?

in Z#.

Answering a question of van Douwen, Gladdines [38] found a closed countable
subset of (Vω

2 )# that is not a retract of (Vω
2 )#, while Givens [36] proved that every

infinite G# contains a closed countable subset that is not a retract of G#. However,
the question remains open in the case of subgroups:

Question 54 (Question 81, [49]). If H is a countable subgroup of an Abelian955?

group G, must H# be a retract of G#?

An affirmative answer to this question of E. van Douwen was obtained in [6]
in the case when H is finitely generated (see also [13] for other partial results and
open problems). The general case is still open.

We refer the reader to [12, 14] for further information about Bohr topology.

7. Miscellanea

Two nondiscrete topologies τ1 and τ2 on a set X are called transversal if τ1∪τ2

generates the discrete topology on X. A precompact group topology on a group
does not admit a transversal group topology, and under certain natural conditions
the converse is also true [27].

Question 55 ([28]). Characterize locally compact groups that admit a transversal956?

group topology.

This question is resolved for locally compact Abelian groups [27] and for
connected locally compact groups [28].

There exists a locally Abelian group G and a compact normal subgroup K of
G such that G does not admit a transversal group topology while G/K does have
a transversal group topology [27, Example 5.4]. The inverse implication remains
unclear:

Question 56 ([28]). If G is a topological group that admits a transversal group957?

topology and K is a compact normal subgroup of G, does also G/K admit a
transversal group topology?

The answer is positive when G = K × H for some subgroup H of G [27], or
when G is a locally compact Abelian group (argue as in the proof of the implication
(d) ⇒ (c) of [27, Corollary 6.7]).

Question 57 ([28]). (i) Is it true that no minimal group topology admits a958–959?

transversal group topology?
(ii) Does the topology of the unitary group of an infinite-dimensional Hilbert

space admit a transversal group topology?
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The answer to item (i) is positive in the Abelian case.
The quasi-components (respectively, the connected components) of the Abelian

pseudocompact groups are precisely all (connected) precompact groups [11]. The
non-Abelian case remains unclear:

Problem 58 ([11]). Describe the connected components and the quasi-components 960?

of pseudocompact groups.

Given a group G, let H(G) denote the family of all Hausdorff group topologies
on G, and P(G) the family of all precompact Hausdorff group topologies on G.
Note that H(G) and P(G) are partially ordered sets with respect to set-theoretic
inclusion of topologies.

Question 59. Suppose that G and H are infinite Abelian groups. Must the groups 961–962?

G and H be (algebraically) isomorphic

(i) if the posets H(G) and H(H) are isomorphic?
(ii) if the posets P(G) and P(H) are isomorphic?

A relevant information (and the origin of this question) may be found in [51].
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