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Abstract. Let c denote the cardinality of the continuum. Using forcing we
produce a model of ZFC + CH with 2c “arbitrarily large” and, in this model,
obtain a characterization of Abelian groups G (necessarily of size at most 2c)
which admit:

(i) a hereditarily separable group topology,
(ii) a group topology making G into an S-space,
(iii) a hereditarily separable group topology that is either precompact, or pseu-

docompact, or countably compact (and which can be made to contain no infinite
compact subsets),

(iv) a group topology making G into an S-space that is either precompact,
or pseudocompact, or countably compact (and which also can be made without
infinite compact subset if necessary).

As a by-product, we completely describe the algebraic structure of Abelian
groups of size at most 2c which possess, at least consistently, a countably compact
group topology (without infinite compact subsets, if desired).

We also put to rest a 1980 problem of van Douwen about the cofinality of the
size of countably compact Abelian groups.
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All group topologies in this paper are considered to be Hausdorff (and thus Ty-
chonoff). Recall that a topological space X is:

Lindelöf if every open cover of X has a countable subcover,
(countably) compact if every (countable) open cover of X has a finite subcover,
pseudocompact if every real-valued continuous function defined on X is bounded,
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It is well-known that compact → countably compact → pseudocompact, and
“pseudocompact + Lindelöf” ↔ compact.

Recall that a topological group G is precompact , or totally bounded , if G is (topo-
logically and algebraically isomorphic to) a subgroup of some compact group. Pseu-
docompact groups are precompact [8], so we have a somewhat longer chain

compact → countably compact → pseudocompact → precompact

of compactness-like conditions for topological groups.
A space X is called hereditarily separable if every subspace of X is separable (in

the subspace topology), and X is said to be hereditarily Lindelöf if every subspace
of X is Lindelöf (in the subspace topology). An S-space is a hereditarily separable
regular space that is not Lindelöf [45]. We refer the reader to [46, 47, 32, 55] for
known results about the problem of the existence of S-spaces.

1. Motivation

Our results originate in three diverse areas of mathematics.
The first source of inspiration comes from the celebrated theory of S-spaces in

set-theoretic topology, and especially, a famous 1975 example of Fedorčuk of a hered-
itarily separable compact space of size 2c. In our paper we completely characterize
Abelian groups that admit a group topology making them into an S-space, and
we produce the “best possible analogues” of the Fedorčuk space in the category of
topological groups. As it turns out, a vast majority of Abelian groups admit group
topologies with properties similar to that of the Fedorčuk example.

The second origin lies in topological algebra, where we were motivated by the
problem of which Abelian groups admit a countably compact group topology. We
completely describe, albeit consistently, the algebraic structure of Abelian groups of
size at most 2c that admit a countably compact group topology.

Our third motivation comes from the theory of cardinal invariants in general
topology. We resolve completely a 1980 problem of van Douwen about the cofinality
of |G| for a countably compact group G in the case of Abelian groups.

We will now address all three sources of our motivation in detail.

1.1. S-groups à la Fedorčuk. Recall that |Y | ≤ c for a hereditarily Lindelöf
Hausdorff space Y [1], and |X| ≤ 2c for a separable Hausdorff space X [43]. It is
natural to ask whether the last inequality can be strengthened to |X| ≤ c for a
hereditarily separable regular space X. If there are no S-spaces, then every hered-
itarily separable regular space X is hereditarily Lindelöf, and therefore |X| ≤ c by
the result cited above. Todorčević has proved the consistency with ZFC that S-
spaces do not exist ([54], see also [55]). Therefore, in Todorčević’s model of ZFC,
hereditarily separable regular spaces have size at most c. A first consistent example
of a hereditarily separable Tychonoff space of size 2c has been found by Hajnal and
Juhász [26]. (An exposition of their forcing construction can also be found in [39].)
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Two years later Fedorčuk [22] produced the strongest known example up to date
using his celebrated inverse spectra with fully closed maps (see also [23]):

Example 1.1. The existence of the following “Fedorčuk space” X is consistent with
ZFC plus CH:

(i) |X| = 2c,
(ii) X is hereditarily separable,
(iii) X is compact, and
(iv) if F is an infinite closed subset of X, then |F | = |X|; in particular, X does

not contain non-trivial convergent sequences.

The main goal of this paper is to address the question of the existence of “Fedorčuk
space” in the context of topological groups. That is, given a group G, we wonder if it
is possible to find a hereditarily separable Hausdorff group topology on G having the
properties that “Fedorčuk space” has. Since we want to get a hereditarily separable
topology on G, we have to restrict ourselves to groups G of size at most 2c. One
naturally expects that the presence of algebra may produce additional restrictions
on how good a Fedorčuk type group can be. And this is indeed the case.

First of all, one is forced to relax somewhat the compactness condition from item
(iii) of Example 1.1 because of two fundamental facts about compact groups:

Fact 1.2. (i) Infinite compact groups contain non-trivial convergent sequences.
(ii) Compact hereditarily separable groups are metrizable.

Both facts are folklore and follow from the following result of Hagler, Gerlits and
Efimov: An infinite compact group G contains a copy of the Cantor cube {0, 1}w(G),
where w(G) is the weight of G. An elementary proof of this theorem, together with
some historical discussion, can be found in [49].

Recall that a space X is initially ω1-compact if every open cover of size ≤ ω1 has
a finite subcover. Item (i) of Fact 1.2 is no longer valid, at least consistently, if one
replaces “compact” by “initially ω1-compact” in it: It is consistent with ZFC that
there exists an initially ω1-compact Hausdorff group topology without non-trivial
convergent sequences on the free Abelian group of size c. This result is announced,
with a hint at a proof, in [56].

However, item (ii) of Fact 1.2 remains valid if one replaces “compact” by “initially
ω1-compact” in it, see [2]. This means that countable compactness appears to be the
strongest compactness type property among awakenings of classical compactness for
which one may hope to obtain hereditarily separable group topologies, and indeed,
consistent examples of hereditarily separable countably compact groups (without
non-trivial convergent sequences) are known in the literature [27, 52, 38]. This
perfectly justifies countable compactness as our strongest compactness condition of
choice when working with hereditarily separable groups.
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Second, we will have to restrict ourselves to Abelian groups because in the non-
commutative case there are groups (of small size) that do not admit any countably
compact or separable group topology, as follows from our next result:

Proposition 1.3. Let X be a set and S(X) the symmetric group of X.1 Then:
(i) S(X) does not admit a separable group topology unless X is countable,
(ii) S(X) admits no countably compact group topology when X is infinite, and
(iii) S(X) does not admit a Lindelöf group topology unless X is countable.

Proof. We equip S(X) with the topology of pointwise convergence on X, i.e. the
topology Tp generated by the family {U(f, F ) : f ∈ S(X), F ∈ [X]<ω} as a base,
where U(f, F ) = {g ∈ S(X) : g(x) = f(x) for all x ∈ F}. It is easy to see that Tp

is a group topology.
Assume that X is an infinite set. For a fixed x ∈ X, the stabilizer Sx = {σ ∈

S(X) : σ(x) = x} = U(idX , {x}) of x is a Tp-open subgroup of S(X) of index |X|,
and hence it produces an open cover of S(X) by pairwise disjoint sets (obtained by
taking appropriate unions of cosets of Sx) without a subcover of size (strictly) less
than |X|. It follows that the space (S(X), Tp) is not countably compact, and also is
neither separable nor Lindelöf when |X| > ω.

It is known that Tp is a minimal element in the lattice of all (Hausdorff) group
topologies on S(X), i.e. Tp ⊆ T for every (Hausdorff) group topology T on S(X)
[25]. This easily yields the conclusion of all three items of our proposition. �

It follows from the above proposition that, for an uncountable set X, the symmet-
ric group S(X) admits neither a separable, nor a countably compact, nor a Lindelöf
group topology.2 Furthermore, free groups never admit countably compact group
topologies ([12, Theorem 4.7]; see also [14, Corollary 5.14]).

Third, algebraic restrictions prevent us from getting the full strength of item (iv),
as our next example demonstrates:

Example 1.4. Let G = Z(2)(c)⊕Z(2c) be the direct sum of the Boolean group Z(2)(c)

of size c and the free Abelian group Z(2c) of size 2c. We claim that, for any Hausdorff
group topology on G, there exists a closed (in this topology) infinite set F such that
|F | < |G|. In fact, F = Z(2)(c) ⊆ G is such a set. Indeed, |F | = c < 2c = |G|, so
it remains only to note that F is an unconditionally closed subset of G in Markov’s
sense [42]; that is, F is closed in every Hausdorff group topology on G. The latter

1That is, S(X) is a set of bijections of X onto itself with the composition of maps as
multiplication.

2In particular, no group S(X) admits a Hausdorff group topology that makes it into an S-
space. This should be compared with substantial difficulties one has to overcome to produce a
model of ZFC in which there are no S-spaces. Furthermore, no group S(X) admits a Hausdorff
group topology that makes it into an L-space (i.e., a hereditarily Lindelöf but not (hereditarily)
separable space). This should be compared with the fact that the consistency of the non-existence
of L-spaces is a well-known problem of set-theoretic topology that remains unresolved.
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follows from the fact that F = {x ∈ G : 2x = 0} is the preimage of the (closed!) set
{0} under the continuous map that sends x to 2x.

We note that our Theorem 2.7 implies that, in an appropriate model of ZFC,
the group G from the example above does admit a hereditarily separable countably
compact group topology without non-trivial convergent sequences. So the best we
can hope for in our quest for Fedorčuk type group G is to require that G satisfies
the second, weaker, condition from item (iv) of Example 1.1, i.e. that G does not
have any non-trivial convergent sequences . In fact, we will manage to get a stronger
condition: G does not have infinite compact subsets .

1.2. Algebraic structure of countably compact Abelian groups. Hal-
mos [28] showed that the additive group of real numbers can be equipped with
a compact group topology and asked which Abelian groups admit compact group
topologies. Halmos’ problem seeking a complete description of the algebraic struc-
ture of compact Abelian groups contributed substantially to the development of
the Abelian group theory, particularly through the introduction of the algebraically
compact groups by Kaplansky [35]. This problem has been completely solved in
[29, 31].

The counterpart of Halmos’ problem for pseudocompact groups asking which
Abelian groups can be equipped with a pseudocompact group topology was attacked
in [4, 12, 13, 5, 6, 14] and the significant progress has been summarized in the
monograph [14]. Recall also that every Abelian group admits a precompact group
topology [7].

The question of which Abelian groups admit a countably compact group topol-
ogy appears to be much more complicated. After a series of scattered results
[27, 19, 52, 38, 17, 57] a complete description of the algebraic structure of count-
ably compact Abelian groups of size at most c under Martin’s Axiom MA has been
recently obtained in [18]: MA implies that an Abelian group G of size at most c
admits a countably compact group topology if and only if it satisfies both PS and
CC, two conditions introduced in Definition 2.3 below. (In particular, every torsion-
free Abelian group of size c admits a countably compact group topology under MA
[53].) In our Theorem 2.7 and Corollary 2.17(ii) we substantially extend this result
by proving that, at least consistently, the conjunction of PS and CC is both a
necessary and a sufficient condition for the existence of a countably compact group
topology on an Abelian group G of size at most 2c. Moreover, we get both hereditary
separability and absence of non-trivial convergent sequences for our group topology
as a bonus.

This “jump” from c to 2c is an essential step forward. Indeed, amazingly little
is presently known about the existence of countably compact group topologies on
groups of cardinality greater than c. Using a standard closing-off argument van
Douwen [20] showed that every infinite Boolean group of size κ = κω admits a
countably compact group topology and his argument can easily be extended to
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Abelian groups of prime exponent. It is consistent with ZFC that the Boolean
group of size κ has a countably compact group topology provided that c ≤ κ ≤ 2c

[58]. (Here 2c can be made “arbitrary large”.) It is also consistent with ZFC that
the free Abelian group of size κ has a countably compact group topology provided
that c ≤ κ = κω ≤ 2c [36]. Finally, it is well-understood which Abelian groups
admit compact group topologies. Essentially these are the only known results in
the literature about the existence of countably compact group topologies on groups
of cardinality greater than c (even without the additional requirement of hereditary
separability).

While the algebraic description of Abelian groups admitting either a compact
or a pseudocompact group topology can be carried out without any additional
set-theoretic assumptions beyond ZFC, all known results about countably com-
pact topologizations described above have either been obtained by means of some
additional set-theoretic axioms (usually Continuum Hypothesis CH or versions of
Martin’s Axiom MA) or their consistency has been proved by forcing. Even the
fundamental question (raised in [52]) as to whether the free Abelian group of size
c admits a countably compact group topology is still open in ZFC. (Recall that no
free Abelian group admits a compact group topology.)

It seems worth noting a peculiar difference between compact and countably com-
pact topologizations of Abelian groups. In the compact case the sufficiency of the al-
gebraic conditions is relatively easy to prove, whereas their necessity is much harder
to establish (see the proof of Theorem 13.2). In the countably compact case the ne-
cessity of PS and CC is immediate (see Lemma 2.5), while the sufficiency is rather
complicated and at the present stage requires additional set-theoretic assumptions.

1.3. van Douwen’s problem: Is |G| = |G|ω for a countably compact
group G? It is well-known that |G| = 2w(G) for an infinite compact group G, where
w(G) is the weight of G [34]. In particular, the cardinality |G| of an infinite compact
group G satisfies the equation |G| = |G|ω. This motivated van Douwen to ask in
[20] the following natural question: Does |G| = |G|ω, or at least cf(|G|) > ω, hold
for every infinite topological group (or homogeneous space) G which is countably
compact?

In the same paper [20] van Douwen proved that, under the Generalized Continuum
Hypothesis GCH, every infinite pseudocompact homogeneous space G satisfies |G| =
|G|ω. In particular, a strong positive answer (with countable compactness weakened
to pseudocompactness, and “topological group” weakened to “homogeneous space”)
to van Douwen’s problem is consistent with ZFC. A first consistent counter-example
to van Douwen’s question has been recently obtained by Tomita [58] who used forcing
to construct a model of ZFC in which every Boolean group of size κ has a countably
compact group topology provided that c ≤ κ ≤ 2c [58, Theorem 2.2]. Here 2c can
be made “arbitrary large” so that, for any given ordinal σ ≥ 1 chosen in advance,
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one can arrange that c ≤ ℵσ ≤ 2c (in particular, ℵω can be included in the interval
between c and 2c).

In our Corollary 2.23 we push Tomita’s negative solution to van Douwen’s question
to the extreme limit by demonstrating that, in a sense, the cofinality of |G| for a
countably compact Abelian group G is completely irrelevant: For every ordinal
σ ≥ 1 it is consistent with ZFC that every Abelian group G of size ℵσ admits
a countably compact group topology provided that G satisfies PS and CC, two
necessary conditions for the existence of such a topology on G (see Definition 2.3
and Lemma 2.5(ii)).

2. Main results

The major achievement of this paper is a forcing construction of a (class of) special
model(s) of ZFC in which Abelian groups of size at most 2c admit hereditarily
separable group topologies with various compactness-like properties and without
infinite compact subsets. This is done in two steps. First, in Definition 5.3 we
introduce, for every cardinal κ ≥ ω2, a new set-theoretic axiom ∇κ which implies
c = ω1 and 2c = κ. We then apply this new axiom to derive all major results of
our paper “in ZFC”. Second, in Section 12 we use forcing to prove Con(ZFC+c =
ω1&2ω1 = κ)−→Con(ZFC+∇κ). In particular, ∇κ is consistent with ZFC and the
power 2c of the continuum c can be made “arbitrarily large”. The definition of ∇κ is
postponed until Section 5 because it uses the fruitful (albeit rather technical) notion
of an almost n-torsion set essentially introduced (under two different names) in [18].
Relevant properties of almost n-torsion sets are discussed in detail in Section 4.

Our first main result shows that, at least consistently, the inequality |G| ≤ 2c

is the only necessary condition for the existence of a hereditarily separable group
topology on an Abelian group:

Theorem 2.1. Under ∇κ, the following conditions are equivalent for any Abelian
group G:

(i) G admits a separable group topology,
(ii) G admits a hereditarily separable group topology,
(iii) G admits a hereditarily separable precompact group topology without infinite

compact subsets, and
(iv) |G| ≤ 2c.

Recall that Todorčević constructed a model of ZFC in which S-spaces do not exist
([54], see also [55]). Things change dramatically in this model:

Theorem 2.2. In any model of ZFC in which there are no S-spaces the following
conditions are equivalent for any Abelian group G:

(i) G admits a hereditarily separable group topology,
(ii) G admits a separable metric precompact group topology, and
(iii) |G| ≤ c.
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We would like to emphasize that there are absolutely no algebraic restrictions
(except natural restriction of commutativity) on the group G in the above two
theorems. Algebraic constraints become more prominent when one adds some com-
pactness condition to the mix.

Let G be an Abelian group. As usual r(G) denotes the free rank of G. For every
natural number n ≥ 1 define G[n] = {g ∈ G : ng = 0} and nG = {ng : g ∈ G}.
Recall that G is:

torsion provided that G =
⋃{G[n] : n ∈ ω \ {0}},

bounded torsion if G = G[n] for some n ∈ ω \ {0},
torsion-free if G[n] = {0} for every n ∈ ω \ {0}, and
divisible if nG = G for each n ∈ ω \ {0}.

We will now introduce three algebraic conditions that will play a prominent role
throughout this paper.

Definition 2.3. For an Abelian group G, define the following three conditions:
PS: Either r(G) ≥ c or G is a bounded torsion group.
CC: For every pair of integers n ≥ 1 and m ≥ 1 the group mG[n] is either finite

or has size at least c.
tCC: If G is torsion, then CC holds.

Our next lemma, despite its simplicity, is quite helpful for better understanding
of these conditions:

Lemma 2.4. Let G be an Abelian group.
(i) If G is torsion, then G satisfies PS if and only if G is a bounded torsion group.
(ii) If G is a torsion-free group, then G satisfies PS if and only if |G| ≥ c.
(iii) If G is a torsion-free group, then G satisfies CC.
(iv) CC for G implies tCC.
(v) If G is not torsion, then G satisfies tCC.
(vi) If G is torsion and satisfies tCC, then G satisfies CC as well.

Proof. To prove (i) note that r(G) = 0 < c if G is torsion.
(ii) If G is a torsion-free group, then condition PS for G becomes equivalent to

r(G) ≥ c, and the latter condition is known to be equivalent to |G| ≥ c.
(iii) Assume that G is torsion-free. Let n ≥ 1 and m ≥ 1 be natural numbers.

Then G[n] = {0} and hence mG[n] = {0} is finite. Therefore CC holds.
Items (iv), (v) and (vi) are trivial. �

Condition PS is known to be necessary for the existence of a pseudocompact
group topology on an Abelian group G, thereby justifying its name (PS stands
for “pseudocompact”). To the best of the author’s knowledge, this fact has been
announced without proof in [4, Remark 2.17] and [12, Proposition 3.3], and has
appeared in print with full proof in [14, Theorem 3.8].
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It can be easily seen that condition CC is necessary for the existence of a count-
ably compact group topology on an Abelian group G, thereby justifying its name
(CC stands for “countably compact”). Indeed, if G is a countably compact group,
then the set G[n] = {g ∈ G : ng = 0} must be closed in G, and thus G[n] is
countably compact in the subspace topology induced on G[n] from G. Furthermore,
the map which sends g ∈ G[n] to mg ∈ mG[n] is continuous, and so mG[n] must
be countably compact (in the subspace topology). It remains only to note that an
infinite countably compact group has size at least c [20, Proposition 1.3 (a)]. In the
particular case when an Abelian group G has size c, the fact that CC is a necessary
condition for the existence of a countably compact group topology on G has been
proved in [18].

Condition CC has essentially appeared for the first time in [12] where it was
proved that CC is necessary for the existence of a pseudocompact group topology
on a torsion Abelian group.3 Since CC and tCC are equivalent for torsion groups
by items (iv) and (vi) of Lemma 2.4, it follows that tCC is a necessary condition
for the existence of a pseudocompact group topology on a torsion group, thereby
justifying our choice of terminology (tCC stands for “torsion CC”). Since tCC
trivially holds for non-torsion groups (see item (vi) of Lemma 2.4), we conclude that
tCC is a necessary condition for the existence of a pseudocompact group topology
on an Abelian group G.

We can now summarize the discussion above in a convenient lemma:

Lemma 2.5. (i) A pseudocompact Abelian group G satisfies PS and tCC.
(ii) A countably compact Abelian group G satisfies PS and CC.

In the “opposite direction”, it is known that the combination of PS and tCC
is sufficient for the existence of a pseudocompact group topology on an Abelian
group G of size at most 2c ([12]; see also [14]) and, under Martin’s Axiom MA, the
combination of PS and CC is sufficient for the existence of a countably compact
group topology on an Abelian group G of size at most c [18].

In our next “twin” theorems we establish that these pairs of conditions are, con-
sistently, also sufficient for the existence of a hereditarily separable pseudocompact
and countably compact group topology on a group G of size at most 2c.

Theorem 2.6. Under ∇κ, the following conditions are equivalent for any Abelian
group G:

(i) G admits a separable pseudocompact group topology,
(ii) G admits a hereditarily separable pseudocompact group topology,
(iii) G admits a hereditarily separable pseudocompact group topology without infi-

nite compact subsets, and

3Furthermore, it is proved in [12] that CC is also a sufficient condition for the existence of a
pseudocompact group topology on a bounded torsion Abelian group of size at most 2c. See also
the proof of Theorem 2.22.
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(iv) |G| ≤ 2c and G satisfies both PS and tCC.

The equivalence of items (i) and (iv) in the above theorem holds in ZFC, see
Theorem 14.2.

Theorem 2.7. Under ∇κ, the following conditions are equivalent for any Abelian
group G:

(i) G admits a separable countably compact group topology,
(ii) G admits a hereditarily separable countably compact group topology,
(iii) G admits a hereditarily separable countably compact group topology without

infinite compact subsets, and
(iv) |G| ≤ 2c and G satisfies both PS and CC.

Theorem 2.7 recovers (and greatly extends) the main result of Dikranjan and
Tkachenko [18]: It is consistent with ZFC that an Abelian group G of size at most
c has a countably compact group topology if and only if G satisfies both PS and
CC.

Things become “essentially trivial” in Todorčević’s model of ZFC without S-
spaces:

Theorem 2.8. In any model of ZFC in which there are no S-spaces the following
conditions are equivalent for any Abelian group G:

(i) G admits a hereditarily separable pseudocompact group topology,
(ii) G admits a hereditarily separable countably compact group topology, and
(iii) G admits a compact metric group topology.

We refer the reader to Theorem 13.2 for the complete algebraic description of
Abelian groups G that admit a compact metric group topology. This algebraic
description can be added as an extra item to Theorem 2.8.

Let G be any Abelian group such that c < |G| ≤ 2c. Since compact metric spaces
have size at most c, our previous theorem implies that, consistently, G does not ad-
mit a hereditarily separable pseudocompact group topology. On the other hand, if
one additionally assumes that G satisfies both PS and CC, then G admits a hered-
itarily separable countably compact group topology under ∇κ (Theorem 2.7). In
particular, we conclude that the existence of a hereditarily separable pseudocompact
(or countably compact) group topology on the free Abelian group of size 2c is both
consistent with and independent of ZFC . An example of an Abelian group of size c
with similar properties is much harder to obtain. We will exhibit such a group in
Example 13.4.

We will now look at what our Theorems 2.6 and 2.7 say for four particular impor-
tant subclasses of Abelian groups: torsion groups, non-torsion groups, torsion-free
groups, and divisible groups.

Corollary 2.9. Under ∇κ, the following conditions are equivalent for any torsion
Abelian group G:
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(i) G admits a separable pseudocompact group topology,
(ii) G admits a hereditarily separable countably compact group topology without

infinite compact subsets, and
(iii) |G| ≤ 2c and G is a bounded torsion group satisfying CC.

Proof. Let G be a torsion Abelian group. According to Lemma 2.4(i), a bounded
torsion group satisfies PS, so (iii) implies (ii) by Theorem 2.7. The implication (ii)
→ (i) is trivial. To see that (i) → (iii), note that |G| ≤ 2c and G satisfies both
PS and tCC by Lemma 2.5(i). Since G is torsion, Lemma 2.4(i) yields that G is a
bounded torsion group, while Lemma 2.4(vi) implies that G satisfies CC. �

The following particular case of the above corollary seems to be worth mentioning:

Corollary 2.10. Under ∇κ, for every prime number p, each natural number n ≥ 1
and every infinite cardinal τ , the following conditions are equivalent:

(i) Z(pn)(τ) admits a separable pseudocompact group topology,
(ii) Z(pn)(τ) admits a hereditarily separable countably compact group topology with-

out infinite compact subsets, and
(iii) c ≤ τ ≤ 2c.

Proof. For the group Z(pn)(τ), condition CC is equivalent to “τ is either finite or
τ ≥ c”, and the result follows from Corollary 2.9. �

Since torsion pseudocompact groups are always zero-dimensional [10], the assump-
tion that G is non-torsion is necessary in the next two theorems.

Theorem 2.11. Under ∇κ, the following conditions are equivalent for any non-
torsion Abelian group G:

(i) G admits a separable pseudocompact group topology,
(ii) G admits a hereditarily separable connected and locally connected pseudocom-

pact group topology without infinite compact subsets, and
(iii) |G| ≤ 2c and G satisfies PS.

Theorem 2.12. Under ∇κ, the following conditions are equivalent for any non-
torsion Abelian group G:

(i) G admits a separable countably compact group topology,
(ii) G admits a hereditarily separable connected and locally connected countably

compact group topology without infinite compact subsets, and
(iii) |G| ≤ 2c and G satisfies PS and CC.

In the case of torsion-free groups things become very transparent, as algebraic
restraints disappear again:

Corollary 2.13. Under ∇κ, the following conditions are equivalent for any torsion-
free Abelian group G:

(i) G admits a separable pseudocompact group topology,
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(ii) G admits a hereditarily separable countably compact connected and locally
connected group topology without infinite compact subsets, and

(iii) c ≤ |G| ≤ 2c.

Proof. Let G be a torsion-free Abelian group. According to item (iii) of Lemma 2.4,
condition PS for G is equivalent to |G| ≥ c, while items (iv) and (v) of the same
lemma imply that both conditions CC and tCC hold for G. It remains only to plug
these facts into Theorems 2.11 and 2.12. �

We note that even a very particular case of our Corollary 2.13 constitutes the main
result of Koszmider, Tomita and Watson [36]: It is consistent with ZFC that for
every cardinal τ such that c ≤ τ = τω ≤ 2c the free Abelian group of size τ admits
a countably compact group topology without non-trivial convergent sequences. The
topology constructed in [36] is not hereditarily separable, while our topology is.
Furthermore, while our topology does not have infinite compact subsets, it is not at
all clear if the topology from [36] has infinite compact subsets or not.

As usual, for a prime number p and an Abelian group G, rp(G) denotes the p-
rank of G. Our next theorem reduces the problem of the existence of a (hereditarily)
separable countably compact group topology on a divisible Abelian group G to a
simple checking of transparent conditions involving the cardinality, free rank and
p-ranks of G.

Theorem 2.14. Under ∇κ, the following conditions are equivalent for any non-
trivial divisible Abelian group G:

(i) G admits a separable countably compact group topology,
(ii) G admits a hereditarily separable connected and locally connected countably

compact group topology without infinite compact subsets,
(iii) c ≤ r(G) ≤ |G| ≤ 2c and, for every prime number p, either the p-rank rp(G)

of G is finite or the inequality rp(G) ≥ c holds.

Corollary 2.15. Under ∇κ, the following conditions are equivalent for any Abelian
group G:

(i) G admits a separable connected precompact group topology,
(ii) G admits a hereditarily separable connected and locally connected pseudocom-

pact group topology without infinite compact subsets.

Proof. (i) →(ii). Since G is precompact, there exists a non-trivial continuous char-
acter χ : G→ T. Then χ(G) is a non-trivial connected subgroup of T, which yields
χ(G) = T. Therefore r(G) ≥ r(T) = c. In particular, G is non-torsion and satisfies
PS. The separability of G yields |G| ≤ 2c. Now implication (iii)→(ii) of Theo-
rem 2.11 guarantees that G admits a hereditarily separable connected and locally
connected pseudocompact group topology without infinite compact subsets.

(i) →(ii) is trivial. �
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Fact 1.2(i) inspired a quest for constructing compact-like group topologies without
non-trivial convergent sequences, see, for example, [50, 27, 19, 38, 41, 52, 9, 58]. Our
next corollary shows that, in a certain sense, one does not need to work that hard
in order to get these topologies: Indeed, at least on Abelian groups of size at most
2c, there are “plenty” of them under the assumption of the axiom ∇κ:

Corollary 2.16. Assume ∇κ. Let G be an Abelian group of size at most 2c. Then:
(i) G admits a hereditarily separable precompact group topology without infinite

compact subsets,
(ii) if G admits a pseudocompact group topology, then G also has a hereditarily

separable pseudocompact group topology without infinite compact subsets,
(iii) if G admits a countably compact group topology, then G also has a hereditarily

separable countably compact group topology without infinite compact subsets.

Proof. Item (i) follows from the implication (iv) → (iii) of Theorem 2.1. Item (ii)
follows from Lemma 2.5(i) and the implication (iv) → (iii) of Theorem 2.6. Item
(iii) follows from Lemma 2.5(ii) and the implication (iv) → (iii) of Theorem 2.7. �

As a by-product of our results, we can completely describe the algebraic struc-
ture of the Abelian groups of size at most 2c which admit, at least consistently, a
countably compact group topology.

Corollary 2.17. Under ∇κ, an Abelian group G of size at most 2c admits a count-
ably compact group topology if and only if G satisfies both PS and CC.

Proof. The “only if” part follows from Lemma 2.5(ii), and the “if” part follows from
the implication (iv) → (iii) of Theorem 2.7. �

Corollary 2.18. Under ∇κ, a torsion Abelian group G of size at most 2c admits a
countably compact group topology if and only if G is bounded and satisfies CC.

Proof. The “only if” part follows from Lemma 2.5(ii), and the “if” part follows from
the implication (iii) → (ii) of Corollary 2.9. �

Our next corollary offers a consistent affirmative answer to Problem 6.7 of [53]:

Corollary 2.19. Under ∇κ, a torsion-free Abelian group G of size at most 2c admits
a countably compact group topology if and only if |G| ≥ c.

Proof. Corollary 2.13 applies. �

Corollary 2.20. Under ∇κ, the following two conditions are equivalent for every
Abelian group G of size at most 2c that is either torsion or torsion-free:

(i) G admits a pseudocompact group topology, and
(ii) G admits a countably compact group topology.

Proof. Clearly (ii) implies (i). To prove the converse, assume (i). Then G satisfies
PS and tCC by Lemma 2.5(i). If G is torsion, G satisfies CC by item (vii) of
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Lemma 2.4. If G is torsion-free, then G satisfies CC by item (iv) of Lemma 2.5.
Since |G| ≤ 2c and G satisfies both PS and CC, Theorem 2.7 now yields that G
has a countably compact group topology. �

Corollary 2.21. Under ∇κ, a divisible Abelian group G of size at most 2c admits
a countably compact group topology if and only if r(G) ≥ c and, for every prime
number p, either the p-rank rp(G) of G is finite or the inequality rp(G) ≥ c holds.

Proof. This immediately follows from Theorem 2.14. �

The counterpart of Corollary 2.17 for pseudocompact group topologies can be
proved in ZFC.

Theorem 2.22. Let G be an Abelian group of size at most 2c. Then G admits a
pseudocompact group topology if and only if G satisfies both PS and tCC.

We will now exhibit an application of Theorem 2.7 to van Douwen’s problem, see
Subsection 1.3. Our next corollary demonstrates that, contrary to van Douwen’s
belief, it is consistent with ZFC that there is nothing exceptional about Abelian
groups whose size has countable cofinality, such as ℵω, ℵω+ω, ℵω+ω+ω etc., from the
point of view of the existence of countably compact group topologies.

Corollary 2.23. For every ordinal σ ≥ 1, it is consistent with ZFC and c = ω1

that every Abelian group of size ℵσ satisfying conditions PS and CC admits a
(hereditarily separable) countably compact group topology (without infinite compact
subsets).

Proof. Choose κ to be bigger than ℵσ. Since ∇κ implies 2c = κ, 2c will also be bigger
than ℵσ. Now our corollary immediately follows from the conclusion of Theorem
2.7. �

Again, things become especially transparent in both torsion and torsion-free case.

Corollary 2.24. For every ordinal σ ≥ 1, it is consistent with ZFC plus c = ω1 that
every bounded torsion Abelian group of size ℵσ satisfying CC admits a (hereditarily
separable) countably compact group topology (without infinite compact subsets).

Proof. This follows from Corollary 2.23 because bounded torsion groups satisfy PS
(see item (ii) of Lemma 2.4). �

Corollary 2.25. For every ordinal σ ≥ 1, it is consistent with ZFC plus c = ω1

that for every prime number p and each natural number n ≥ 1 the group Z(pn)(ℵσ)

admits a (hereditarily separable) countably compact group topology (without infinite
compact subsets).

Proof. This follows from Corollary 2.24 since the group Z(pn)(ℵσ) satisfies condition
CC because c = ℵ1 ≤ ℵσ. �
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Even a particular case of our last corollary, with p = 2 and n = 1, implies the main
result of Tomita [58]: For every ordinal σ ≥ 1, it is consistent with ZFC plus c = ω1

that the Boolean group Z(2)(ℵσ) of size ℵσ can be equipped with a countably compact
group topology. It is also worth mentioning that the group topology constructed in
[58] is not hereditarily separable and has non-trivial convergent sequences (because it
contains a Σ-product of uncountably many compact metric groups, and it is easily
seen that such a Σ-product is not separable and has an infinite compact metric
subgroup).

Corollary 2.26. For every ordinal σ ≥ 1, it is consistent with ZFC that every
torsion-free Abelian group of size ℵσ admits a (hereditarily separable) countably com-
pact group topology (without infinite compact subsets).

Proof. Choose κ to be bigger than ℵσ. Since ∇κ implies 2c = κ, 2c will also be bigger
than ℵσ. Since ∇κ also implies c = ω1, we have c = ℵ1 ≤ ℵσ, and Corollary 2.13
applies. �

Our results on hereditary separable topologizations allow us to make a contribu-
tion to the celebrated “S-space problem”. Scattered examples of topological groups
which are S-spaces are known in the literature [27, 19, 52, 38, 44, 48, 40, 51]. Our
final three theorems describe completely which Abelian groups admit group topolo-
gies (with various compactness conditions) which make them into S-spaces.

Theorem 2.27. Under ∇κ, the following are equivalent for an Abelian group G:
(i) G admits a group topology that makes it into an S-space,
(ii) G admits a precompact group topology that makes it into an S-space,
(iii) c ≤ |G| ≤ 2c.

Theorem 2.28. Under ∇κ, the following are equivalent for an Abelian group G:
(i) G admits a pseudocompact group topology that makes it into an S-space,
(ii) c ≤ |G| ≤ 2c and G satisfies both PS and tCC.

Theorem 2.29. Under ∇κ, the following are equivalent for an Abelian group G:
(i) G admits a countably compact group topology that makes it into an S-space,
(ii) c ≤ |G| ≤ 2c and G satisfies both PS and CC.

Since hereditarily separable (initially ω1-)compact groups are metrizable, a (ini-
tially ω1-)compact group cannot be an S-space.

The proofs of all our theorems can be found in Section 10.
Our paper makes essential use of a wide range of ideas and techniques from

algebra, general topology and set theory (notably, forcing). We estimate that the
readers fluent in all three disciplines form a tiny (if not empty) set.4 Yet our goal is
to make this paper readable, with some effort, by a specialist in all three disciplines
(and by non-specialists as well). This explains why we have taken a great care to

4Incidentally, neither of the authors alone belongs to this set.



16 D. DIKRANJAN AND D. SHAKHMATOV

make our manuscript as self-contained as possible. Furthermore, we have arranged
the material in a way that maximizes the part of the paper that an average reader
can read without running into difficulties with understanding. In particular, the
knowledge of forcing is necessary only in Sections 11 and 12, and the rest of the
paper is written “in ZFC”.

We believe that our method of presentation makes this manuscript accessible to
a broad audience of mathematicians without any special background in algebra,
topology or set theory, and this is precisely the way we wanted it. We are perfectly
aware, however, of a certain unfortunate side effect of our emphasis on readability:
A specialist in one of the above three disciplines may find some parts of the paper
to be an easy reading. For example, algebraists will definitely want to skip most of
Section 3 and move through Section 6 quickly. Topologists and set-theorists with
background in HFD sets will undoubtedly find themselves at home in Section 7.
Specialists in forcing will probably notice that some ideas for the poset from Section
11 come from [26] and [38, 5.4].

3. Algebraic preliminaries

In the sequel Z denotes the group of integer numbers, Q denotes the group of
rational numbers, T denotes the torus group, and P denotes the set of prime num-
bers. For a cardinal κ and a group G, G(κ) denotes the sum of κ many copies of the
group G and Gκ denotes the full (direct) product of κ many copies of G.

If H is an Abelian group and h ∈ H, then 〈〈h〉〉 = {nh : n ∈ Z} denotes the cyclic
subgroup of H generated by h.

A map π : G→ H from an Abelian group G into an Abelian group H is called a
(group) homomorphism provided that π(x + y) = π(x) + π(y) and π(−x) = −π(x)
whenever x, y ∈ G. A homomorphism π : G → H is a monomorphism if {x ∈ G :
π(x) = 0} = {0}, i.e. if π has trivial kernel.

Lemma 3.1. Let H be be Abelian group, H0, H1 its subgroups, and πi : Hi → A
for each i = 0, 1 a group homomorphism into an Abelian group A. If π0 �H0∩H1=
π1 �H0∩H1, then there exists a group homomorphism π : H0 + H1 → A such that
π �Hi

= πi for every i = 0, 1.

Proof. If x = x0 + x1 is a (not necessarily unique) representation of x ∈ H0 + H1

with xi ∈ Hi for i = 0, 1, define π(x) = π0(x0) + π1(x1). The details are left to the
reader5. �

The following lemma is part of algebraic folklore [24, Theorem 21.1].

Lemma 3.2. Let H be an Abelian group, H ′ its subgroup and π′ : H ′ → T a
group homomorphism to a divisible Abelian group T . Then there exists a group
homomorphism π : H → T extending π′.

5upon suggestion of the referee who insisted on cutting this proof.
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As a corollary we obtain a well known property of divisible subgroups found by
Baer [3] (see also [24]):

Corollary 3.3. A divisible subgroup of an Abelian group is always a direct factor.

The proof of the next lemma is a standard application of Zorn’s lemma:

Lemma 3.4. Let L be a subgroup of an Abelian group G. Then there exists a
maximal (under set inclusion) subgroup N of G with respect to the property L∩N =
{0}.

Note that the subgroup N as above need not be unique.
Let us recall that a subgroup N of an Abelian group G is said to be essential if

H ∩N 6= {0} for every subgroup H of G with H 6= {0}. Equivalently, N is essential
provided that 〈〈x〉〉 ∩ N 6= {0} for every x ∈ H with x 6= 0. The importance of
essentiality can be easily seen from the series of lemmas that follow.

Lemma 3.5. Let N be a subgroup of an Abelian group G. Then N is an essential
subgroup of G if and only if every homomorphism π : G → H to an Abelian group
H is a monomorphism whenever the restriction π �N : N → H of π to N is a
monomorphism.

Our next lemma provides a typical example of how essential subgroups appear
naturally in algebraic proofs (compare this with Lemma 3.4).

Lemma 3.6. Let L be a subgroup of an Abelian group G. If N is a maximal
(under set inclusion) subgroup of G with respect to the property L ∩N = {0}, then
L+N = L⊕N is an essential subgroup of G.

Proof. Let H be a non-trivial subgroup of G. If H ∩ (L+N) = {0}, then L∩ (N +
H) = {0}, and thus N +H = N by maximality of N . Therefore, H ⊆ N and hence
H∩ (L+N) ⊇ H∩N = H 6= {0}. This contradiction yields H∩ (L+N) 6= {0}. �

Recall that, for a given prime number p, an Abelian group G is called a p-group if
the period of every element of G is a power of p. The next lemma provides a typical
example of an essential subgroup:

Lemma 3.7. If H is an Abelian p-group, then H[p] is an essential subgroup of H.
In particular, if G is an Abelian group and p is a prime number, then G[p] is an
essential subgroup of G(p∞) =

⋃{G[pn] : n ∈ ω}.

Lemma 3.8. If N is an essential subgroup of an Abelian group G, then r(N) = r(G)
and rp(N) = rp(G) for every prime number p.

Proof. Clearly r(N) ≤ r(G) and rp(N) ≤ rp(G) for each prime p. To prove that
r(N) = r(G) argue for a contradiction and assume r(N) < r(G). Then there must
exist an element x ∈ G such that 〈〈x〉〉 ∼= Z and 〈〈x〉〉 ∩ N = {0}, which contradicts
essentiality of N in G. Similarly, if rp(N) < rp(G) for some prime number p, then
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there must exist an element x ∈ G such that 〈〈x〉〉 ∼= T[p] and 〈〈x〉〉 ∩N = {0}, which
again contradicts essentiality of N in G. �

Our next lemma is probably known, but we include a complete proof here for
readers convenience.

Lemma 3.9. Let {Gi : i ∈ I} be a family of Abelian groups. If Ni is an essential
subgroup of Gi for each i ∈ I, then

⊕
i∈I Ni is an essential subgroup of

⊕
i∈I Gi.

Proof. First, we claim that it suffices to prove our lemma in the particular case
when the set I is finite. Indeed, assuming that the finite case of our lemma has been
already proved, let us prove it in the general case. Assume g ∈ ⊕i∈I Gi and g 6= 0.
Pick J ∈ [I]<ω such that g =

∑
j∈J gj, where gj ∈ Gj. Then g ∈⊕j∈J Gj. According

to the final case of our lemma,
⊕

j∈J Nj is an essential subgroup of
⊕

j∈J Gj, which
yields 〈〈g〉〉 ∩⊕i∈I Ni ⊇ 〈〈g〉〉 ∩⊕j∈J Nj 6= {0}.

It remains only to consider the case when I = {0, 1, . . . , n} is finite. By induction
on n we will prove that

⊕
i≤nNi is an essential subgroup of

⊕
i≤nGi.

Basis of induction. Let us prove our lemma for n = 1. Assume that N0 and
N1 are essential subgroups of Abelian groups G0 and G1 respectively. Assume
g = g0 + g1 ∈ G0 ⊕G1, where gi ∈ Gi for i = 0, 1. Suppose also that g 6= 0. We will
consider two cases.

Case 1. gi = 0 for some i = 0, 1. In this case g = g1−i ∈ G1−i, and from g 6= 0
and essentiality of N1−i in G1−i, we have 〈〈g〉〉 ∩ (N0 ⊕N1) ⊇ 〈〈g〉〉 ∩N1−i 6= {0}.

Case 2. g0 6= 0 and g1 6= 0. From g0 ∈ G0 and essentiality of N0 in G0, we
get 〈〈g0〉〉 ∩ N0 6= {0}. Pick n0 ∈ Z \ {0} such that n0g0 ∈ N0 and n0g0 6= 0. If
n0g1 = 0, then n0g = n0(g0 + g1) = n0g0 6= 0 and n0g = n0g0 ∈ N0 ⊆ N0 ⊕ N1,
i.e. 〈〈g〉〉 ∩ (N0 ⊕ N1) 6= {0}. Otherwise, n0g1 6= 0, n0g1 ∈ G1 and essentiality of
N1 in G1 yields 〈〈n0g1〉〉 ∩ N1 6= {0}. Therefore n1n0g1 ∈ N1 and n1n0g1 6= 0 for
some n1 ∈ Z \ {0}. Now note that n1n0g0 ∈ n1N0 ⊆ N0 and n1n0g1 ∈ N1 implies
n1n0g = n1n0(g0 + g1) = n1n0g0 + n1n0g1 ∈ N0 ⊕ N1. Furthermore, n1n0g1 6= 0
implies n1n0g = n1n0g0 + n1n0g1 6= 0 because G0 ⊕G1 is the direct sum. Therefore
〈〈g〉〉 ∩ (N0 ⊕N1) 6= {0}.

Inductive step. Assume that n ∈ ω, n ≥ 2 and our lemma has been proved for all
k < n. For i ≤ n let Ni be an essential subgroup of an Abelian group Gi. By our
inductive assumption,

⊕
i≤n−1Ni is an essential subgroup of

⊕
i≤n−1Gi. Applying

the inductive assumption once again (to the case of two groups), we conclude that
(
⊕

i≤n−1Ni)⊕Nn is an essential subgroup of (
⊕

i≤n−1Gi)⊕Gn. �

Recall that a family N = {Ni : i ∈ I} of subgroups of G is said to be independent,
if the subgroup N generated by N is their direct sum

⊕
i∈I Ni. In other words, if

J ∈ [I]<ω, gj ∈ Nj for every j ∈ J and
∑

j∈J gj = 0, then gj = 0 for all j ∈ J .
Equivalently, N is independent if and only if every element g ∈ N admits a unique
representation g =

∑
i∈I gi where gi ∈ Ni for every i ∈ I and the set {i ∈ I : gi 6= 0}

is finite.
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Lemma 3.10. Let H be an Abelian group and {Gi : i ∈ I} an independent family
of subgroups of an Abelian group G. For each i ∈ I let πi : Gi → H be a group
homomorphism. Then:

(i) There exists a unique group homomorphism π =
⊕

i∈I πi :
⊕

i∈I Gi → H such
that π �Gi

= πi for i ∈ I. Moreover,
(ii) If each πi is a monomorphism and the family {πi(Gi) : i ∈ I} of subgroups of

H is independent, then π is also a monomorphism.

Proof. (i) This is the well known categorical characterization of the direct sum.
(ii) Since each πi is a monomorphism, there exists a unique inverse π−1

i : πi(Gi) →
Gi. Item (i) yields the existence of a homomorphism ρ =

⊕
i∈I π

−1
i :

⊕
i∈I πi(Gi) →⊕

i∈I Gi such that ρ �πi(Gi)= π−1
i for i ∈ I. Obviously, ρ ◦ π is the identity map of⊕

i∈I Gi, and hence π is a monomorphism. �

Lemma 3.11. Let {Gi : i ∈ I} be a family of subgroups of an Abelian group H.
Assume also that Ni is an essential subgroup of Gi for i ∈ I. Then the family
{Gi : i ∈ I} is independent if and only if the family {Ni : i ∈ I} is independent.

Proof. The “only if” part is obvious. To prove the “if” part, assume that the
family {Ni : i ∈ I} is independent. By Lemma 3.10 there exists a unique group
homomorphism π : G =

⊕
i∈I Gi → H such that π �Gi

: Gi ↪→ H is the inclusion for
i ∈ I. By the independence of the family {Ni : i ∈ I}, the restriction of π to the
subgroup N =

⊕
i∈I Ni of G is a monomorphism. According to Lemma 3.9, N is an

essential subgroup of G. Therefore π is a monomorphism by Lemma 3.5. Hence the
family {Gi : i ∈ I} is independent. �

In view of Lemma 3.7, our next lemma is a particular case of Lemma 3.11:

Lemma 3.12. Let {Hi : i ∈ I} be a family of non-zero p-subgroups of an Abelian
group G. If the family {Hi[p] : i ∈ I} is independent, then also the family {Hi : i ∈
I} is independent.

Lemma 3.13. Let p be a prime number, n ∈ ω \ {0}, G an Abelian group and
V a subgroup of pn−1G[pn] of size ω1, then there exists a subgroup N of G with
N ∼= T[pn](ω1) and N [p] = V .

Proof. Pick a base {xi}i∈I of V of size ω1. Since xi ∈ pn−1G[pn], we can find
yi ∈ G[pn] such that xi = pn−1yi. Then 〈〈yi〉〉 ∼= T[pn] for every i ∈ I. Moreover,
〈〈yi〉〉[p] = 〈〈xi〉〉, for i ∈ I, form an independent family. Hence by Lemma 3.12 also
{〈〈yi〉〉 : i ∈ I} is an independent family. Therefore, the elements {yj : j ∈ J}
generate a subgroup N of G isomorphic to T[pn](ω1). Obviously, N [p] = V . �

Lemma 3.14. Let {Sn : n ∈ ω} be a sequence of subgroups of an Abelian group G
with S0 ⊇ S1 ⊇ · · · ⊇ Sn ⊇ Sn+1 ⊇ . . . . Assume also that {Vn : n ∈ ω} is a sequence
of subgroups of G such that Vn ⊆ Sn and Vn ∩ Sn+1 = ∅ for every n ∈ ω. Then the
family {Vn : n ∈ ω} is independent.
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Proof. Assume the contrary, and fix J ∈ [ω]<ω \ {∅} and gj ∈ Vj for every j ∈ ω
such that

∑
j∈J gj = 0 but gj 6= 0 for all j ∈ J . Let n be the smallest integer in

J . Then j ∈ J \ {n} implies n < j and thus gj ∈ Vj ⊆ Sj ⊆ Sn+1. Therefore,∑
j∈J\{n} gj ∈ Sn+1. From −gn =

∑
j∈J\{n} gj ∈ Vn ∩ Sn+1 = {0} we get gn = 0, a

contradiction. �

Lemma 3.15. Let G be an Abelian group, t(G) its torsion subgroup and N the
maximal (with respect to set inclusion) subgroup of G satisfying t(G) ∩ N = {0}.6
Then:

(i) the family {G[p] : p ∈ P} ∪ {N} is independent, and
(ii) Soc(G)⊕N is an essential subgroup of G, where Soc(G) =

⊕
p∈PG[p].

Proof. Item (i) of our lemma is trivial. Let us check (ii). Lemma 3.6 yields that
t(G) ⊕ N is an essential subgroup of G. In view of Lemma 3.9 and transitivity
of essentiality, it remains only to prove that Soc(G) is an essential subgroup of
t(G). Recall that, for p ∈ P, G(p∞) =

⋃{G[pn] : n ∈ ω \ {0}} denotes the largest
p-subgroup of G. Clearly the family {G(p∞) : p ∈ P} is independent, and so
t(G) =

⊕{G(p∞) : p ∈ P}. From Lemmas 3.7 and 3.9 one concludes that Soc(G)
is an essential subgroup of t(G). �

In the next lemma we show that the cardinal invariants r(−) and rp(−) alone
can determine a lot about when an Abelian group can be embedded into another
Abelian group.

Lemma 3.16. Suppose that G and H are Abelian groups such that r(G) ≤ r(H)
and rp(G) ≤ rp(H) for all p ∈ P. Then there is a monomorphism π : G′ → H
defined on an essential subgroup G′ of G Moreover, if H is assumed to be divisible,
then G′ can be chosen to coincide with G.

Proof. Use Lemma 3.4 twice to pick a maximal subgroup NG of G with t(G)∩NG =
{0} and a maximal subgroup NH of H with t(H) ∩ NH = {0}. By Lemma 3.15(i)
{G[p] : p ∈ P}∪{NG} is an independent family in G and {H[p] : p ∈ P}∪{NH} is an
independent family in H. Combining Lemmas 3.15(ii) and 3.8 with the assumption
of our lemma gives

r(NG) = r(Soc(G)⊕NG) = r(G) ≤ r(H) = r(Soc(H)⊕NH) = r(NH),

and thus there is a monomorphism π0 : LG → NH defined on an essential subgroup
LG

∼= Z(r(G)) of NG. Similarly, for p ∈ P, we have

rp(G[p]) = rp(Soc(G)⊕NG) = rp(G) ≤ rp(H) = rp(Soc(H)⊕NH) = rp(H[p]),

and so there is a monomorphism πp : G[p] → H[p]. Since LG is a subgroup of
NG, {G[p] : p ∈ P} ∪ {LG} is an independent family in G by Lemma 3.15(i).
Since πp(G[p]) ⊆ H[p] for p ∈ P and π0(LG) ⊆ NH , reference to Lemma 3.15(i)

6Which exists by Lemma 3.4.
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once again gives us that the family {πp(G[p]) : p ∈ P} ∪ {π0(LG)} of subgroups of
H is independent. According to Lemma 3.10, there exists a unique monomorphism
π : G′ → H such that π �G[p]= πp for p ∈ P and π �LG

= π0, where G′ = Soc(G)⊕LG.
Since LG is essential subgroup of NG, G′ is an essential subgroup of Soc(G) ⊕ NG

(Lemma 3.9), and the latter subgroup is essential in G by Lemma 3.15(ii). Since
essentiality is transitive, G′ is essential in G.

Suppose now, in addition, that H is divisible. Lemma 3.2 allows us to find a
homomorphism ϕ : G → H extending π. Since the restriction ϕ �G′= π of ϕ to the
essential subgroup G′ of G is a monomorphism, ϕ itself is a monomorphism (Lemma
3.5). �

Lemma 3.17. Let G and H be Abelian groups such that |G| ≤ r(H) and |G| ≤
rp(H) for each p ∈ P. Suppose also that G′ a subgroup of G such that r(G′) < r(H)
and rp(G

′) < rp(H) for all p ∈ P. If H is divisible, then for every monomorphism
φ : G′ → H there exists a monomorphism ϕ : G→ H such that ϕ�G′= φ.

Proof. Define H ′ = φ(G′). Use Lemma 3.4 twice to pick a maximal subgroup NG

of G with G′ ∩NG = {0} and a maximal subgroup NH of H with H ′ ∩NH = {0}.
Since G′ +NG = G′ ⊕NG is an essential subgroup of G by Lemma 3.6, Lemma 3.8
yields

(1) r(G) = r(G′ ⊕NG) = r(G′) + r(NG).

Similarly, since H ′ + NH = H ′ ⊕ NH is an essential subgroup of H by Lemma 3.6,
Lemma 3.8 yields

(2) r(H) = r(H ′ ⊕NH) = r(H ′) + r(NH) = r(G′) + r(NH),

where in the last equation we used the fact that H ′ = φ(G′) and φ is a monomor-
phism. Therefore,

(3) r(G′) + r(NG) = r(G) ≤ |G| ≤ r(H) = r(G′) + r(NH).

If r(H) is finite, from (3) one immediately gets r(NG) ≤ r(NH). Otherwise, the
hypothesis r(G′) < r(H) and (3) yield r(NG) ≤ r(NH).

Similarly, for a given p ∈ P, again by essentiality and Lemma 3.8 we obtain the
following p-versions of (1) and (2), respectively:

(4) rp(G) = rp(G
′ ⊕NG) = rp(G

′) + rp(NG),

(5) rp(H) = r + p(H ′ ⊕NH) = rp(H
′) + rp(NH) = rp(G

′) + rp(NH).

From (4) and (5) one gets

(6) rp(G
′) + rp(NG) = rp(G) ≤ |G| ≤ rp(H) = rp(G

′) + rp(NH).

If rp(H) is finite, (6) implies rp(NG) ≤ rp(NH). Otherwise, the hypothesis rp(G
′) <

rp(H) and (6) yield rp(NG) ≤ rp(NH).
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Since r(NG) ≤ r(NH) and rp(NG) ≤ rp(NH) for every p ∈ P, there exist an
essential subgroup N ′

G of NG and a monomorphism ψ : N ′
G → NH (Lemma 3.16).

By our choice of NG and NH , it follows that {G′, NG} is an independent family in
G and {H ′, NH} is an independent family in H. Then the sum φ⊕ ψ : G′ ⊕N ′

G →
H ′⊕NH ⊆ H of monomorphisms φ and ψ is again a monomorphism by Lemma 3.10.
Since H is divisible, we can use Lemma 3.2 to find a homomorphism ϕ : G → H
extending φ⊕ ψ. Since N ′

G is an essential subgroup of NG, G′ ⊕N ′
G is an essential

subgroup of G′ ⊕ NG (Lemma 3.9), and the latter is an essential subgroup of G
by Lemma 3.6. Hence G′ ⊕ N ′

G is an essential subgroup of G by transitivity of
essentiality. Finally, Lemma 3.5 guarantees that ϕ is a monomorphism. �

Lemma 3.18. Let G and H be Abelian groups such that |G| ≤ r(H) and |G| ≤
rp(H) for each p ∈ P. If H is divisible, then there exists a monomorphism φ : G→
H. In particular, G is algebraically isomorphic to a subgroup of H.

Proof. Apply Lemma 3.17 with G′ = {0} and φ′ the trivial monomorphism. �

4. almost n-torsion sets

For a subset E of an Abelian group G and n ∈ ω we define nE = {nx : x ∈ E}.
We will say that d ∈ ω is a proper divisor of n ∈ ω provided that d 6∈ {0, n} and

dm = n for some m ∈ ω. Note that, according to our definition, each d ∈ ω \ {0} is
a proper divisor of 0.

Definition 4.1. Let H be an Abelian group. For a given n ∈ ω we will say that
E ∈ [H]ω is almost n-torsion in H if nE = {0} and the set {x ∈ E : dx = h} is
finite for each h ∈ H and every proper divisor d of n.

We note that there are no almost 1-torsion sets. To justify our terminology we
note that if a set E is almost n-torsion in H for n ≥ 2, then all but finitely many
elements of E are n-torsion, i.e. have order n.7

Remark 4.2. While the terminology in the above definition is new, the notion it-
self is not. It is easy to check that our almost n-torsion sets for n ≥ 2 coincide
with n-round sets in the sense of [18, Definition 3.3], while our almost 0-torsion sets
are precisely the admissible sets in the sense of [18, Definition 3.3]. However, the
new terminology proposed in Definition 4.1 not only appears to command signifi-
cantly more expressive power than the generic names from [18] but also provides a
unification for two different notions introduced in [18].

We would like to note the following important fact:

Lemma 4.3. Let E be a subset of an Abelian group H and n ∈ ω. Then the
following conditions are equivalent:

(i) E is almost n-torsion in H,
(ii) E is almost n-torsion in the smallest subgroup 〈〈E〉〉 of H that contains E.

7Recall that x ∈ H has order n provided that nx = 0 but mx 6= 0 whenever 0 < m < n.
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Proof. It suffices to note that, for every n ≥ 1, the set {x ∈ E : nx = h} is empty
unless h ∈ 〈〈E〉〉. �

Our next lemma says that almost n-torsionness of a set E is an absolute property
in a sense that it does not depend on the group that contains E:

Lemma 4.4. Let H be a group, G its subgroup and E ⊆ G. Then E is almost
n-torsion in G if and only if E is almost n-torsion in H.

Proof. Note that 〈〈E〉〉 ⊆ G ⊆ H. Applying Lemma 4.3 twice, we conclude that E is
almost n-torsion in H iff E is almost n-torsion in 〈〈E〉〉 iff E is almost n-torsion in
G. �

Lemma 4.5. If G is an Abelian group, m ∈ ω \ {0}, d ∈ ω \ {0, 1}, n = dm and E
is an almost n-torsion subset of G, then mE is an almost d-torsion subset of G.

Proof. Note that m is a proper divisor on n. Since E is almost n-torsion, the set
{g ∈ E : mg = h} is finite for every h ∈ G, which implies that mE is an infinite
set. Since E ⊆ G[n] and n = dm, we have mE ⊆ G[d]. Suppose now that k
is a proper divisor of d, i.e. d = d′k with d′ 6= 1. Then n = dm = d′km and
thus km is a proper divisor of n. Let h ∈ G. Since E is almost n-torsion, the set
Eh = {g ∈ E : kmg = h} is finite, and thus the set {g′ ∈ mE : kg′ = h} ⊆ mEh

must be finite as well. �

Having in mind differences in terminology described in Remark 4.2, we can borrow
the next two lemmas from [18].

Lemma 4.6. ([18, Lemma 3.6]) Let S be an infinite subset of an Abelian group H.
Then there exist n ∈ ω \ {1}, an element h ∈ H and an almost n-torsion set E in
H such that h+ E ⊆ S.

For a (discrete) Abelian group G we use G∗ to denote the group of characters
equipped with the topology of pointwise convergence. That is, G∗ = {f : G→ T is
a group homomorphism}, and a base of the topology of G∗ consists of the sets

W (h, k, n;x0, x1, . . . , xn) = {f ∈ G∗ : ∀i ≤ n |f(xi)− h(xi)| < 1/k},

where h ∈ G∗, k, n ∈ ω and x0, x1, . . . , xn ∈ G. It is well-known that G∗ is compact
[30, 23.17].

Lemma 4.7. ([18, Lemma 4.2]) Let E be an almost 0-torsion subset of an Abelian
group G. Then the set FE = {f ∈ G∗ : f(E) is dense in T} is the intersection of
countably many open dense subsets of G∗.

Even though the proof of our next lemma can be extracted from the proof of [18,
Lemma 3.7], we include it here for the reader’s convenience.
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Lemma 4.8. For a natural number n > 1 let E be an almost n-torsion subset of an
Abelian group G. Then for every z ∈ T[n] the set

Un
E(z) = {f ∈ G∗ : ∃x ∈ E f(x) = z}

is open and dense in G∗.

Proof. Let us first verify that Un
E(z) is open in G∗. Indeed, let f ∈ Un

E(z). Then
f(x) = z for some x ∈ E. Observe that V = {f ′ ∈ G∗ : |f ′(x)− f(x)| < 1/n} is an
open subset of G∗ with f ∈ V . It remains only to check that V ⊆ Un

E(z). Indeed, let
f ′ ∈ V be arbitrary. Then f(x) = z and definition of V implies that |f ′(x)−z| < 1/n.
Since x ∈ E ⊆ G[n], it follows that nx = 0 and thus nf ′(x) = f ′(nx) = f ′(0) = 0,
i.e. f ′(x) ∈ T[n]. Note also that z ∈ T[n]. Since different elements of T[n] are
at least distance 1/n apart, the condition |f ′(x) − z| < 1/n now yields f ′(x) = z.
Therefore, f ′ ∈ Un

E(z).
Let us now prove that Un

E(z) is dense in G∗. It suffices to prove that, for a given
h ∈ G∗, k, n ∈ ω and x0, x1, . . . , xn ∈ G, one has W (h, k, n;x0, x1, . . . , xn)∩Un

E(z) 6=
∅.

Since E is almost n-torsion, the set E ∩G[d] is finite for every proper divisor d of
n. Therefore, there exists a finite set F such that each element of E \F has order n.
Since N = 〈〈x0〉〉+ 〈〈x1〉〉+ · · ·+ 〈〈xn〉〉 is a finitely generated subgroup of G, its torsion
part t(N) is finite. We claim that there exists a non-zero element x ∈ E \ F such
that 〈〈x〉〉 ∩N = {0}. Suppose the contrary, i.e. 〈〈x〉〉 ∩N 6= {0} for every x ∈ E \F .
Then for every x ∈ E \ F one can find a proper divisor dx of n such that dxx ∈ N .
Note that, in fact, dxx ∈ t(N) for every x ∈ E \ F . Since both t(N) and the set
of proper divisors of n are finite and the set E \ F is infinite, there exist an infinite
E ′ ⊆ E, a proper divisor d of n and a ∈ t(N) such that dx = d and dxx = dx = a
for all x ∈ E ′. This contradicts the fact that E is almost n-torsion.

Pick now x ∈ E \ F with 〈〈x〉〉 ∩ N = {0}. Since z ∈ T[n] and x has order n,
there exists a homomorphism π1 : 〈〈x〉〉 → T such that π(x) = z. We can now apply
Lemma 3.1 to H0 = N , π0 = h �N , H1 = 〈〈x〉〉 and π1 to get a homomorphism
π : N + 〈〈x〉〉 → T such that π(xi) = π �N (xi) = h �N (xi) = h(xi) for all i ≤ n
and π(x) = π1(x) = z. Let f : G → T be any group homomorphism extending π.
Then f(xi) = h(xi) for all i ≤ n, which yields f ∈ W (h, k, n;x0, x1, . . . , xn). Finally,
f(x) = π(x) = z with x ∈ E, which implies f ∈ Un

E(z). �

Lemma 4.9. For a natural number n > 1 let E be an almost n-torsion subset of an
Abelian group G. Then the set

Fn
E = {f ∈ G∗ : ∀z ∈ T[n] {x ∈ E : f(x) = z} is infinite}

contains an intersection of countably many open dense subsets of G∗.

Proof. Partition E into countably many pairwise disjoint infinite sets Em, and define
B =

⋂{Un
Em

(z) : m ∈ ω, z ∈ T[n]}. Since each Em is almost n-torsion (being an
infinite subset of an almost n-torsion set), each set Un

Em
(z) is open and dense in G∗
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by Lemma 4.8. The inclusion B ⊆ Fn
E is immediate from the fact that {Em : m ∈ ω}

is a partition of E. �

It will be convenient for us to define T[0] =
⋃{T[n] : n ∈ ω \ {0}} so that T[0]

becomes exactly the subgroup of torsion elements of T. It is well-known that T[0]
is dense in T. With this notation in mind, we are now ready to prove the following
key lemma which will be essential for our forcing construction:

Lemma 4.10. Suppose that G be an Abelian group, g ∈ G, g 6= 0 and E ⊆ [G]ω is
a countable family. Then there exists a group homomorphism $ : G→ T such that:

(i) $(g) 6= 0,
(ii) if n ∈ ω, z ∈ T[n], k ∈ ω \ {0} and E ∈ E is almost n-torsion in G, then the

set {h ∈ E : |$(h)− z| < 1/k} is infinite.

Proof. For every n ∈ ω let En = {E ∈ E : E is almost n-torsion}. Since |En| ≤
|E| ≤ ω for each n ∈ ω, Lemmas 4.6 and 4.9 allow us to conclude that there exists
a countable family {Vn : n ∈ ω} of open dense subsets of G∗ such that

B =
⋂
{Vn : n ∈ ω} ⊆

⋂
{FE : E ∈ E0} ∩

⋂
{Fn

E : n ∈ ω \ {0}, E ∈ En}.
Pick arbitrarily a homomorphism h : G→ T such that h(g) 6= 0 and choose k ∈ ω \
{0} with 1/k < |h(g)− 0| 6= 0. Then W (h, k, 0; g) = {f ∈ G∗ : |f(g)− h(g)| < 1/k}
is a nonempty open set in G∗ such that f ∈ W (h, k, 0; g) implies f(g) 6= 0. Since
G∗ is compact, by the Baire category theorem, the intersection

W (h, k, 0; g) ∩B = W (h, k, 0; g) ∩
⋂
{Vn : n ∈ ω}

must be nonempty. We now claim that any $ ∈ W (h, k, 0; g) ∩ B will satisfy the
conclusion of our lemma. From $ ∈ W (h, k, 0; g) it follows that $(g) 6= 0, i.e. (i)
holds.

Let us check (ii). Assume that n ∈ ω, z ∈ T[n], k ∈ ω \ {0} and E ∈ E is almost
n-torsion in G. We need to show that the set {h ∈ E : |$(h)− z| < 1/k} is infinite.
We will consider two cases.

Case 1: n = 0. Then E ∈ E0, and from our choice of $ it follows that $ ∈ FE,
i.e. the set $(E) is dense in T. Since {y ∈ T : |y − z| < 1/k} is an open subset of
T, by denseness of $(E) in T, the intersection {y ∈ T : |y− z| < 1/k}∩$(E) must
be infinite. Then the set {h ∈ E : |$(h)− z| < 1/k} must be infinite as well.

Case 2: n ≥ 1. Then E ∈ En, and from our choice of $ it follows that $ ∈ Fn
E,

which implies that the set {x ∈ E : $(x) = z} is infinite. Since {x ∈ E : $(x) =
z} ⊆ {x ∈ E : |$(x)− z| < 1/k}, the latter set must be infinite as well. �

5. Topological embedding axiom ∇κ

Definition 5.1. (i) Let K0 = Z(ω1) and Kn = T[n](ω1) for every n ∈ ω \ {0}.
(ii) Define K =

⊕
n∈ω Kn.

Definition 5.2. For an infinite cardinal κ we define Hκ = Q(κ) ⊕ (Q/Z)(κ).
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Recall that a point x of a space X is called a cluster point of a set D ⊆ X provided
that the intersection U ∩D is infinite for every open set U containing x.

Definition 5.3. For every cardinal κ ≥ ω1 let us agree to denote by∇′
κ the following

statement: “There exist monomorphisms πκ : Hκ → Tω1 and θκ : K → Hκ satisfying
the following three conditions:

(Π1) If n ∈ ω and E ∈ [Hκ]
≤ω is an almost n-torsion subset of Hκ, then jγ(πκ(E))

is dense in T[n]ω1\γ for some γ ∈ ω1, where jγ : Tω1 → Tω1\γ is the projection map
defined by jγ(z) = z �ω1\γ for z ∈ Tω1 .

(Π2) If n ∈ ω and E ∈ [Hκ]
≤ω is an almost n-torsion subset of Hκ, then πκ(E)

has a cluster point in πκ(θκ(Kn)).
(Π3) ξβ(πκ(θκ(K0))) = Tβ for every β ∈ ω1, where ξβ : Tω1 → Tβ is the projection

map defined by ξβ(z) = z �β for z ∈ Tω1 .”
For every cardinal κ ≥ ω2 we use ∇κ as an abbreviation for “c = ω1 & 2c =

κ & ∇′
κ”.

We always consider πκ(Hκ) with the subspace topology induced from Tω1 .

6. Algebraic embeddings arising from PS and CC

Definition 6.1. Let G be an Abelian group.
(i) We define N(G) ⊆ ω by declaring n ∈ N(G) if and only if G contains at least

one almost n-torsion subset.
(ii) Define K(G) =

⊕
n∈N(G)Kn.

Obviously, K(G) ⊆ K and Kn ⊆ K(G) for every n ∈ N(G).
Note that 1 6∈ N(G) because almost 1-torsion sets do not exist. We will need

“downward closedness” of the set N(G):

Lemma 6.2. If G is an Abelian group, n ∈ N(G) \ {0} and d 6= 1 is a divisor of n,
then d ∈ N(G).

Proof. Since n ∈ N(G)\{0}, there exists an almost n-torsion set E ∈ [G]ω. We also
have dm = n with some m ∈ ω. By Lemma 4.5, mE is an almost d-torsion set in
G, and hence d ∈ N(G). �

Lemma 6.3. Let G be an Abelian group satisfying PS such that then 0 ∈ N(G).
Then G contains a subgroup algebraically isomorphic to K0.

Proof. Note that a bounded torsion group cannot contain almost 0-torsion sets, so
combining 0 ∈ N(G) and PS yields r(G) ≥ c ≥ ω1. Therefore G contains a subgroup
algebraically isomorphic to Z(ω1) ∼= K0. �

Lemma 6.4. If G is an Abelian group satisfying condition CC and p is a prime
number, then n ∈ ω \{0} and pn ∈ N(G) implies that G has a subgroup algebraically
isomorphic to Kpn.
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Proof. First let us settle the case n = 1. From p ∈ N(G) it follows that G has an
almost p-torsion set E ⊆ G[p]. In particular, G[p] is infinite and thus |G[p]| ≥ c by
CC. Hence G[p] contains a subgroup algebraically isomorphic to Kp.

Assume now that n ≥ 2. From pm ∈ N(G) it follows that G has an almost pn-
torsion set E ⊆ G[pn]. Now Lemma 4.5 implies that {pn−1x : x ∈ E} ⊆ pn−1G[pn]
is an almost p-torsion set. Therefore, the set pn−1G[pn] is infinite, and CC implies
that |pn−1G[pn]| ≥ c. Let V be a subgroup of pn−1G[pn] of size ω1. Application of
Lemma 3.13 now yields a subgroup N of G with N ∼= T[pn](ω1) ∼= Kpn . �

Lemma 6.5. If G is an Abelian group satisfying condition CC, then for every
prime number p ∈ P the group G contains a subgroup algebraically isomorphic to
Kp(G) =

⊕
m∈ω,pm∈N(G)Kpm.

Proof. Fix p ∈ P and let Ωp = {n ∈ ω \ {0} : pn ∈ N(G)}. According to Lemma
6.2, either Ωp = {1, . . . , n} for some n ∈ ω, or Ωp = ω. The former case is trivial
since in this case Kp(G) =

⊕n
k=1Kpk is isomorphic to a subgroup of Kn

pn
∼= Kpn and

G contains a subgroup algebraically isomorphic to Kpn by Lemma 6.4 (note that
pn ∈ N(G)). So we are left with the latter case Ωp = ω, i.e. Kp(G) = Kp∞ , where
Kp∞ =

⊕
n∈ω Kpn .

For each n ∈ ω, define Sn = pnG[pn+1] and note that Sn+1 is a subgroup of the
group Sn, and therefore, the quotient group Sn/Sn+1 is well-defined. We need to
consider two cases.

Case 1. There exists a sequence 0 < m1 < m2 < . . . < mk < . . . of natural
numbers such that |Smk−1/Smk

| ≥ ω1 for every k ∈ ω. In this case for every k ∈ ω
one can find a subgroup Vk of size ω1 of Smk−1 with Vk ∩ Smk

= {0}. Then the
family {Vk : k ∈ ω} is independent by Lemma 3.14. Since Vk is a subgroup of
Smk−1, by Lemma 3.13 one can find a subgroup Nk of G such that Nk

∼= Kpmk and
Nk[p] = Vk. Now by Lemma 3.12 the family {Nk : k ∈ ω} is independent. The
subgroup

⊕
k∈ω Nk of G generated by the family {Nk : k ∈ ω} obviously contains a

copy of Kp∞ .
Case 2. There exists m0 ∈ ω such that |Sm/Sm+1| ≤ ω for all m ≥ m0. Note that

in this case |Sm0/Sm0+k| ≤ ω for every k ∈ ω. Since pm0+1 ∈ N(G), Lemma 6.4 yields
that G[pm0+1] contains an isomorphic copy of Kpm0+1 , and thus Sm0 = pm0G[pm0+1]
contains an isomorphic copy of Kp. Therefore, there exists an infinite independent
family {Vk : k ∈ ω} in Sm0 with Vk

∼= Kp for all k. For every k ∈ ω consider the
subgroup Wk = Vk∩Sm0+k of Vk. The quotient group Vk/Wk is naturally isomorphic
to a subgroup of Sm0/Sm0+k, and thus |Vk/Wk| ≤ |Sm0/Sm0+k| ≤ ω for every k ∈ ω.
Since Vk

∼= Kp, this yields Wk
∼= Kp for every k ∈ ω. Since Wk is also a subgroup

of Sm0+k, by Lemma 3.13 we get a subgroup Nk of G such that Nk
∼= Kpm0+k+1 and

Nk[p] = Wk. Since the family {Vk : k ∈ ω} was chosen independent, the family
{Wk : k ∈ ω} is independent too. Hence Lemma 3.12 ensures that also the family
{Nk : k ∈ ω} is independent. Therefore it generates a subgroup of G isomorphic to
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k∈ω Nk

∼=
⊕

k∈ω Kpm0+k+1 . It remains only to note that the latter group contains
an isomorphic copy of the group Kp∞ . �

Lemma 6.6. Let G be an infinite Abelian group satisfying conditions PS and CC.
Then G contains a subgroup algebraically isomorphic to K(G).

Proof. For each p ∈ P, Lemma 6.5 yields the existence of an isomorphic copy
Kp(G) ∼= Kp(G)(ω) in G, so G contains an independent family {Mn,p : n ∈ ω}
consisting of subgroups isomorphic to Kp(G). For every n ∈ ω define Mn =
〈〈⋃p∈PMn,p〉〉 = ⊕p∈PMn,p.

We claim that, for every n ∈ N(G)\{0, 1}, Mn contains a subgroupK ′
n isomorphic

to Kn. Indeed, let n = pk1
1 · . . . · pks

s , where p1, p2, . . . , ps are distinct prime numbers
and k1, k2, . . . , ks are positive integers. For i = 1, 2, . . . , s, since n ∈ N(G) implies
pki

i ∈ N(G) by Lemma 6.2, Mn,pi
∼= Kpi

(G) contains a subgroup Li isomorphic to
K

p
ki
i

(Lemma 6.4). Clearly, K ′
n = 〈〈L1 ∪ L2 ∪ · · · ∪ Ls〉〉 is a subgroup of

⊕
p∈PMn,p =

Mn. Since each Li is a pi-group and the primes p1, p2, . . . , ps are distinct, the family
{L1, L2, . . . , Ls} is independent, and so K ′

n =
⊕s

i=1 Li
∼= K

p
k1
1
⊕ . . .⊕Kpks

s

∼= Kn.

If 0 ∈ N(G), apply Lemma 6.3 to find a subgroup K ′
0 of G isomorphic to K0.

If 0 6∈ N(G), define K ′
0 = {0}. Notice that the family {K ′

0} ∪ {Mn : n ∈ ω} of
subgroups of G is independent, and therefore so is also the family {K ′

0}∪{K ′
n : n ∈

N(G)\{0, 1}}. Thus 〈〈{K ′
0} ∪

⋃
n∈N(G)\{0,1}K

′
n〉〉 = K ′

0⊕
⊕

n∈N(G)\{0,1}K
′
n. It remains

only to note that the last group is isomorphic to K(G) because 1 6∈ N(G). �

Lemma 6.7. Let κ ≥ ω2 be a cardinal and G an infinite Abelian group of size at
most κ.

(i) If G is a non-torsion group that satisfies PS, then for every monomorphism
φ : K0 → Hκ there exists a monomorphism ϕ : G→ Hκ such that φ(K0) ⊆ ϕ(G).

(ii) If G satisfies both PS and CC, then for every monomorphism φ : K(G) → Hκ

there exists a monomorphism ϕ : G→ Hκ such that φ(K(G)) ⊆ ϕ(G).

Proof. (i) Assume that G is not torsion and satisfies PS. Then r(G) ≥ c, and
so G contains a subgroup algebraically isomorphic to K0. Thus we shall assume,
without loss of generality, that K0 is a subgroup of G. Hence it suffices to find a
monomorphism ϕ : G → Hκ extending φ. Since |G| ≤ κ = r(Hκ), r(K0) = ω1 <
ω2 ≤ κ = r(Hκ), |G| ≤ κ = rp(Hκ) and rp(K0) = 0 ≤ κ = rp(Hκ) for every
p ∈ P, the conclusion of item (i) of our lemma follows from Lemma 3.17 (applied
to G′ = K0 and H = Hκ).

(ii) Due to Lemma 6.6 we can assume, without loss of generality, that K(G) is a
subgroup of G. Hence it suffices to find a monomorphism ϕ : G→ Hκ extending φ.
Since |G| ≤ κ = r(Hκ), r(K(G)) ≤ ω1 < ω2 ≤ κ = r(Hκ), |G| ≤ κ = rp(Hκ) and
rp(K(G)) ≤ ω1 < ω2 ≤ κ = rp(Hκ) for every p ∈ P, the conclusion of item (ii) of
our lemma follows from Lemma 3.17 (applied to G′ = K(G) and H = Hκ). �
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7. πκ(Hκ) is hereditarily separable

Our goal of proving that πκ(Hκ) is hereditarily separable would be trivial if πκ(Hκ)
satisfied one of the well-known sufficient conditions for hereditary separability like
HFD or HFDw (see survey [33]). Unfortunately, due to algebraic restrictions imposed
by almost n-torsion sets (for n ≥ 2), πκ(Hκ) does not have the above mentioned
properties. So we need to carry out a more delicate analysis in order to prove
hereditary separability of πκ(Hκ).

Definition 7.1. Let Z be a topological space.
(i) For each γ ∈ ω, we define the projection map jZ

γ : Zω1 → Zω1\γ by jZ
γ (z) =

z �ω1\γ for z ∈ Zω1 .
(ii) A subset X of Zω1 will be called finally separable in Zω1 provided that there

exists γ ∈ ω1 such that jZ
γ (X) is separable (in the subspace topology of Zω1\γ). In

other words, X is finally separable in Zω1 if there exist γ ∈ ω1 and E ∈ [X]≤ω

such that the set jZ
γ (E) is dense in jZ

γ (X) (considered with the subspace topology

of Zω1\γ).
(iii) A subset Y of Zω1 will be called hereditarily finally separable in Zω1 , or shortly

HFS in Zω1 , provided that each subset X of Y is finally separable in Zω1 .

In agreement with item (Π1) of Definition 5.3, we will use a simpler notation jγ
instead of jT

γ .

Lemma 7.2. Let Z is a space and X a subspace of Zω1. Suppose that there exist
γ ∈ ω1 and E ∈ [X]≤ω such that jZ

γ (E) is dense in Zω1\γ. Then X is finally separable
in Zω1.

Proof. Indeed, jZ
γ (E) is a countable dense subset of jZ

γ (X). �

Our next lemma demonstrates that these notions are quite appropriate:

Lemma 7.3. Let Z be a separable metric space and Y be a subspace of Zω1. Then
the following conditions are equivalent:

(i) Y is hereditarily separable,
(ii) Y is HFS in Zω1.

Proof. 8 Clearly (i) implies (ii) since hereditary separability is preserved by contin-
uous maps, and each projection jZ

γ is continuous.
Let us now prove that (ii) implies (i). If Y is HFS in Zω1 and X is a subset of Y ,

then X itself is HFS in Zω1 . Therefore, to prove implication (ii) → (i), it suffices
only to check that every set Y that is HFS in Zω1 is separable (in the subspace
topology of Zω1).

Fix a countable base B of Z. For A ∈ [ω1]
<ω and B ∈ BA, define WA,B = {z ∈

Zω1 : z(α) ∈ B(α) for all α ∈ A} and YA,B = Y ∩W (A,B), and also fix γA,B ∈ ω1

8In case Z is the two-point discrete space {0, 1}, this lemma is essentially proved in [33].



30 D. DIKRANJAN AND D. SHAKHMATOV

and DA,B ∈ [YA,B]≤ω such that jZ
γA,B

(DA,B) is dense in jZ
γA,B

(YA,B). This is possible
because the set YA,B is finally dense in Zω1 , being a subset of the set Y , which in
turn is HFS in Zω1 . Define a function σ : ω1 → ω1 by σ(γ) = γ + 1 + sup{γA,B :
A ∈ [γ]<ω, B ∈ BA} for γ ∈ ω1. Pick γ0 ∈ ω1 arbitrarily, and define a sequence
{γn : n ∈ ω} of countable ordinals via γn+1 = σ(γn). Let λ = sup{γn : n ∈ ω}, and
note that λ ∈ ω1 and γ1 < γ2 < · · · < γn < · · · < λ.

Clearly, D =
⋃{DA,B : A ∈ [λ]<ω, B ∈ BA} is a countable subset of Y . It remains

only to prove that D is dense in Y . Let O be an arbitrarily open subset of Zω1

with O ∩ Y 6= ∅. We need to show that O ∩ D 6= ∅. There exist A ∈ [ω1]
<ω,

B ∈ BA and x ∈ Y such that x ∈ WA,B ⊆ O. Define A′ = A ∩ λ, A′′ = A \ λ,
B′ = B �A′ , B

′′ = B �A′′ and µ = γA′,B′ . Then max(A′) < γn for some n ∈ ω, and
hence µ = γA′,B′ ≤ γn+1 < λ by our definition of λ and γn’s. Since A′ ∈ [λ]<ω, from
our definitions of D and B′ it follows that DA′,B′ ⊆ D.

Since WA′′,B′′ is a basic open set in Zω1 and jZ
µ is an open map, the set jZ

µ (WA′′,B′′)

is open in Zω1\µ. From x ∈ WA,B ⊆ WA′′,B′′ , one gets jZ
µ (x) ∈ jZ

µ (WA′′,B′′). Since

x ∈ Y ∩WA,B ⊆ Y ∩WA′,B′ = YA′,B′ , we have jZ
µ (x) ∈ jZ

µ (YA′,B′), and so jZ
µ (x) ∈

jZ
µ (YA′,B′) ∩ jZ

µ (WA′′,B′′) 6= ∅. Since WA′′,B′′ is a basic open set in Zω1 and jZ
µ is

an open map, the set jZ
µ (WA′′,B′′) is open in Zω1\µ, which implies that jZ

µ (YA′,B′) ∩
jZ
µ (WA′′,B′′) is a non-empty open subset of jZ

µ (YA′,B′). By denseness of jZ
µ (DA′,B′) in

jZ
µ (YA′,B′), we conclude that there exists y ∈ DA′,B′ such that jZ

µ (y) ∈ jZ
µ (WA′′,B′′).

Together with µ < λ ≤ minA′′ this yields y ∈ WA′′,B′′ . Since y ∈ DA′,B′ ⊆ D and
y ∈ DA′,B′ ⊆ YA′,B′ ⊆ WA′,B′ , we finally get y ∈ D ∩WA′,B′ ∩WA′′,B′′ = D ∩WA,B ⊆
D ∩O 6= ∅. �

For the reader familiar with the notion of an elementary submodel, we mention in
passing that an elegant way to get separability of Y in the proof of the above lemma
is to take any countable elementary submodel M of (a sufficiently large fragment
of) the universe V containing all relevant information (such as Y , Z etc.), and then
observe that the countable set M ∩ Y is automatically dense in Y .

Lemma 7.4. Let G be a topological group and H a countable family of its subgroups
such that each H ∈ H is hereditarily separable (in the subspace topology). If X ⊆ G
is not separable, then there exists E ∈ [X]ω such that |(g + H) ∩ E| ≤ 1 whenever
H ∈ H and g ∈ G.

Proof. For a fixed g ∈ G, the translation map that sends x ∈ G to g + x is a
homeomorphism of G onto itself, and so g + H is hereditarily separable for every
H ∈ H. Note that a countable union of hereditarily separable subspaces of G is
again hereditarily separable, and thus YC =

⋃{g+H : g ∈ C,H ∈ H} is hereditarily
separable for every C ∈ [H]≤ω. Since our X is not separable, X \ YC 6= ∅ for every
C ∈ [H]≤ω. This allows us, by recursion on n ∈ ω, to pick xn ∈ X \ Y{x0,...,xn−1}.
Clearly E = {xn : n ∈ ω} has the required properties. �
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Lemma 7.5. Suppose that G is a subgroup of T ω1 such that, for all n > 1 and each
almost n-torsion subset E of G there exists γ ∈ ω1 such that the set jγ(E) is dense
in T[n]ω1\γ.

Then for every integer n ≥ 2 the subgroup G[n] = G ∩ T[n]ω1 of G is hereditarily
separable in the subspace topology induced from T ω1.

Proof. Let us prove by induction on n ≥ 2 that G[n] = G ∩ T[n]ω1 is hereditarily
separable.

Basis of induction. Let us prove that G[2] = G ∩ T[2]ω1 is hereditarily separable.
In view of our Lemma 7.3 (with Z = T[2]) it suffices to prove that G[2] ⊆ T[2]ω1

is HFS in T[2]ω1 . Let X be a subset of G[2]. If X is finite, then clearly X is
finally separable in T[2]ω1 . Suppose that X is infinite and pick E ∈ [X]ω. Since
E ⊆ X ⊆ G[2], E is an almost 2-torsion subset of G. By the assumption of our
lemma, there exists γ ∈ ω1 such that the set jγ(E) is dense in T[2]ω1\γ. Now X is
finally separable in T[2]ω1 by Lemma 7.2.9

Inductive step. Let n > 2 and suppose that we have already proved that G[m]
is hereditarily separable for all m with 2 ≤ m < n. Let us now prove that G[n] is
hereditarily separable. In view of our Lemma 7.3 (with Z = T[n]) it suffices to prove
that G[n] ⊆ T[n]ω1 is HFS in T[n]ω1 . Let X be a subset of G[n]. If X is separable,
then X is finally separable (γ = 0 works). Suppose that X is not separable. By
our inductive hypothesis, H = {G[m] : 2 ≤ m < n} is a finite family of hereditarily
separable subgroups of G, and so we can apply Lemma 7.4 with this H and our X
to get the set E ∈ [X]ω as in the conclusion of Lemma 7.4. Now observe that E
is almost n-torsion. By the hypothesis of our lemma, there exists γ ∈ ω1 such that
the set jγ(E) is dense in T[n]ω1\γ, and Lemma 7.2 yields that X is finally separable
in T[n]ω1 . �

Lemma 7.6. Suppose that G is a subgroup of T ω1 such that for all n ∈ ω \ {1} and
each almost n-torsion subset E of G there exists γ ∈ ω1 such that the set jγ(E) is
dense in T[n]ω1\γ. Then G is hereditarily separable in the subspace topology induced
from T ω1.

Proof. By Lemma 7.5, G[n] is hereditarily separable for every n ≥ 2. Since a
countable union of hereditarily separable subspaces is hereditarily separable, we
conclude that the torsion part t(G) =

⋃{G[n] : n ≥ 2} of G is hereditarily separable.
According to Lemma 7.3, to prove that G is hereditarily separable it suffices to

show that G ⊆ T ω1 is HFS in T ω1 . Let X ⊆ G. If X is separable, then it is finally
separable (γ = 0 works). Otherwise we can apply Lemma 7.4 with H = {t(G)} to
our X to get E ∈ [X]ω as in conclusion of Lemma 7.4. According to Lemma 4.6,
there exist an almost n-torsion set E ′ ⊆ G and g ∈ G such that g + E ′ ⊆ E. We

9For those readers who are familiar with the classical notion of an HFD set we mention that the
above proof actually shows that G[2] is an HFD subset of T[2]ω1 , and thus hereditary separability
of G[2] follows from the classical results about HFD sets, see [33].
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claim that n = 0. Indeed, if n ≥ 1, then nE ′ = {0} implies E ′ ⊆ G[n] ⊆ t(G),
and so |g + E ′| = |(g + E ′) ∩ E| ≤ |(g + t(G)) ∩ E| ≤ 1, which yields |E ′| ≤ 1, a
contradiction. Therefore, E ′ is almost 0-torsion. By our hypothesis, jγ(E

′) is dense
in T [0]ω1\γ (hence in T ω1\γ) for some γ ∈ ω1, and thus jγ(g + E ′) is also dense in
T ω1\γ. This proves that X is finally separable in T ω1 by Lemma 7.2. �

Lemma 7.7. Under ∇′
κ, πκ(Hκ) is hereditarily separable.

Proof. Combine condition (Π1) from Definition 5.3 with Lemma 7.6. �

8. πκ(Hκ) has no infinite compact subsets

Lemma 8.1. Under ∇′
κ, the group πκ(Hκ) does not have infinite compact subsets.

Proof. Let Φ be an infinite compact subset of πκ(Hκ). Fix an infinite set S ⊆ Hκ

such that πκ(S) ⊆ Φ. According to Lemma 4.6, there exist a natural number
n ∈ ω \ {1}, E ∈ [Hκ]

ω and h ∈ Hκ so that h+E ⊆ S and E is almost n-torsion in
Hκ. Both πκ : Hκ → Tω1 and jγ ◦ πκ : Hκ → Tω1\γ are group homomorphisms, so

(7) jγ(πκ(h)) + jγ(πκ(E)) = jγ(πκ(h+ E)) ⊆ jγ(πκ(S)) ⊆ jγ(Φ).

By (Π1), there exists γ ∈ ω1 such that Eγ = {πκ(h) �ω1\γ: h ∈ E} = jγ(πκ(E)) is

dense in T[n]ω1\γ. Therefore, T[n]ω1\γ ⊆ jγ(πκ(E)), where A denotes the closure of
a set A ⊆ Tω1\γ in Tω1\γ. Combining this with (7), one obtains
(8)
jγ(πκ(h))+T[n]ω1\γ ⊆ jγ(πκ(h))+jγ(πκ(E)) = jγ(πκ(h)) + jγ(πκ(E)) ⊆ jγ(Φ) = jγ(Φ).

(The last equality holds because jγ(Φ), being the image of the compact space Φ
under the continuous map jγ, is compact, and hence closed in Tω1\γ.) Since T[n]ω1\γ

contains a non-separable subset10, (8) implies that jγ(Φ) is not hereditarily separa-
ble. Since jγ(Φ) is a continuous image of Φ, the latter space cannot be hereditarily
separable as well. This, however, contradicts Φ ⊆ πκ(Hκ) and Lemma 7.7. �

9. Making subgroups of πκ(Hκ) countably compact

We will need an alternative description of countably compact spaces: A space X
is countably compact provided that every infinite subset of X has a cluster point.

Lemma 9.1. Assume ∇′
κ. If H is a subgroup of Hκ such that θκ(Kn) ⊆ H whenever

n ∈ N(H), then πκ(H) is countably compact.

Proof. Let S be an infinite subset of H. We are going to prove that πκ(S) has a
cluster point in πκ(H). According to Lemma 4.6, there exist n ∈ ω \ {1}, E ∈ [H]ω

and h ∈ H so that h + E ⊆ S and E is almost n-torsion in H. Since H ⊆ Hκ,
Lemma 4.4 allows us to assume that the set E is almost n-torsion in Hκ. From

10Recall that T[0] is a torsion part of T, so T[2] ⊆ T[0]. Finally, T[n]ω1\γ for n ≥ 2 contains a
homeomorphic copy of the Cantor cube {0, 1}ω1 .
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n ∈ N(G) and the assumption of our lemma it follows that θκ(Kn) ⊆ H, and thus
πκ(θκ(Kn)) ⊆ πκ(H). Condition (Π2) from Definition 5.3 implies that πκ(E) has a
cluster point in πκ(θκ(Kn)), and so in πκ(H) as well. Then the set πκ(h + E) =
πκ(h) + πκ(E) has a cluster point in πκ(h) + πκ(H) = πκ(H). (The last equality
holds because h ∈ H.) Since h+E ⊆ S, πκ(S) ⊇ πκ(h+E) also has a cluster point
in πκ(H). �

Lemma 9.2. Assume ∇κ. If G is an infinite Abelian group of size at most 2c

satisfying conditions PS and CC, then there exists a monomorphism ϕ : G → Hκ

such that the subgroup πκ(ϕ(G)) of πκ(Hκ) is countably compact.

Proof. Recall that K(G) is a subgroup of K, so both θκ(K(G)) and φ = θκ �K(G):
K(G) → Hκ are well-defined. Since θκ is a monomorphism, so is φ. Note that
|G| ≤ 2c = κ by ∇κ, so we can apply Lemma 6.7 to fix a monomorphism ϕ : G→ Hκ

such that θκ(K(G)) = φ(K(G)) ⊆ ϕ(G). If n ∈ N(G), then Kn ⊆ K(G) by
Definition 6.1, and so θκ(Kn) ⊆ θκ(K(G)) ⊆ ϕ(G). Therefore, H = ϕ(G) satisfies
the assumption of Lemma 9.1, and since ∇κ implies ∇′

κ, the last lemma yields that
πκ(H) = πκ(ϕ(G)) is countably compact. �

10. Proofs of theorems from Section 2

In this section we provide proofs of theorems left without proof in Section 2.
A slight peculiarity of the order in which we choose to provide our proofs should
perhaps be mentioned. Namely, we prove Theorem 2.7 before proving Theorem 2.6,
and we give the proof of Theorem 2.28 before that of Theorem 2.27. This is done
out of necessity, since we use Theorems 2.7 and 2.28 in our proofs of Theorems 2.6
and 2.27, respectively. The reader should be assured that this does not lead to a
circular argument.

Proof of Theorem 2.1: Implications (iii)→(ii)→(i)→(iv) are trivial and do not
require ∇κ. Let us prove the implication (iv)→(iii) assuming ∇κ. Suppose that G is
an Abelian group of size at most 2c. Since |G| ≤ 2c = κ = r(Hκ) = rp(Hκ) for each
p ∈ P, Lemma 3.18 yields the existence of a monomorphism φ : G → Hκ. Since
πκ is a monomorphism, πκ(φ(G)) is a subgroup of πκ(Hκ) algebraically isomorphic
to G. Consider G with the topology that its isomorphic image πκ(φ(G)) inherits
from πκ(Hκ). Since πκ(Hκ) is a subgroup of the compact group T ω1 , the group G
with this topology is precompact. Since πκ(Hκ) is hereditarily separable (Lemma
7.7) and does not contain infinite compact subsets (Lemma 8.1), G has the same
properties.

Proof of Theorem 2.2: Clearly (ii)→(i).
(i)→(iii). Let G be a hereditarily separable group. Since there are no S-spaces,

G must be hereditarily Lindelöf, and so |G| ≤ c [1].
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(iii)→(ii). Let G be an Abelian group of size at most c. Since T ω is a divisible
group and |G| ≤ c = r(T ω) = rp(T ω) for all p ∈ P, G is algebraically isomorphic to
a subgroup of the compact metric group T ω (Lemma 3.18).

Proof of Theorem 2.7: Clearly (iii)→(ii)→(i) holds in ZFC. The implication
(i)→(iv) follows, again in ZFC, from [43] and Lemma 2.5(ii).

It remains only to prove that (iv)→(iii) under ∇κ. Suppose that G is an Abelian
group of size at most 2c satisfying both PS and CC. According to Lemma 9.2, there
exists a monomorphism φ : G→ Hκ such that πκ(φ(G)) is countably compact. Since
πκ(Hκ) is hereditarily separable (Lemma 7.7) and does not contain infinite compact
subsets (Lemma 8.1), its subgroup πκ(φ(G)) has the same properties. It remains
only to note that πκ(φ(G)) is algebraically isomorphic to G.

Proof of Theorem 2.6: Clearly (iii)→(ii)→(i) holds in ZFC. The implication
(i)→(iv) follows, again in ZFC, from [43] and Lemma 2.5(i).

It remains only to prove that (iv)→(iii) under ∇κ. Suppose that G is an Abelian
group of size at most 2c satisfying both PS and tCC. We need to consider two cases.

Case 1 . G is not torsion. Apply Lemma 6.7(i) to G and φ = θκ �K0 to find
a monomorphism ϕ : G → Hκ such that θκ(K0) = φ(K0) ⊆ ϕ(G). From the last
inclusion and condition (Π3) of the Definition 5.3, one concludes that ξβ(πκ(ϕ(G))) =
Tβ for every β ∈ ω1. Together with Lemma 4 of [21], this yields pseudocompactness
of πκ(ϕ(G)). Since πκ(Hκ) is hereditarily separable (Lemma 7.7) and does not
contain infinite compact subsets (Lemma 8.1), its subgroup πκ(φ(G)) has the same
properties. It remains only to note that πκ(φ(G)) is algebraically isomorphic to G.

Case 2 . G is torsion. Then G satisfies CC by item (vi) of Lemma 2.4. Since G
also satisfies PS, we can apply Theorem 2.7 (which has been proved by now) to get
a hereditarily separable countably compact (hence, pseudocompact) group topology
without infinite compact subsets on G.

Proof of Theorem 2.8: Clearly (iii)→(ii)→(i) holds in ZFC. To see that (i)→(iii)
if there are no S-spaces, note that in a model of ZFC without S-spaces, a hereditarily
separable group G must be hereditarily Lindelöf, and thus G is compact and first
countable provided that G is pseudocompact. Finally, first countable groups are
metrizable.

Proof of Theorems 2.11 and 2.12: The implication (ii)→(i) in both theorems
is trivial. The implication (i)→(iii) in Theorems 2.11 and 2.12 follows from the
implication (i)→(iv) of Theorems 2.6 and 2.7 respectively. To prove the remaining
implication (iii)→(ii) in both theorems we note that, according to Case 1 in the proof
of Theorem 2.6, there exists a monomorphism ϕ : G→ Hκ such that πκ(ϕ(G)) is a
dense pseudocompact subgroup of Tω1 . Since Tω1 is connected and locally connected,
so is πκ(ϕ(G)) (see, for example, [14, Fact 2.10]).

Proof of Theorem 2.14: Let us consider the following additional condition (iv):
|G| ≤ 2c and G satisfies both PS and CC.
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(i) ↔ (iv) has been proved in Theorem 2.7.
(i) → (ii). Let G be a non-trivial divisible Abelian group that admits a (separa-

ble) countably compact group topology. Recall that torsion pseudocompact groups
are zero-dimensional [10] and pseudocompact divisible groups are connected [59].
Since G is non-trivial, it follows that G is non-torsion. Now (ii) follows from the
implication (i) → (ii) of Corollary 2.12.

(ii) → (i) is trivial.
(iv)→ (iii). Since a non-trivial divisible group cannot be a bounded torsion group,

the inequality r(G) ≥ c follows from the definition of PS. If p is a prime number
such that rp(G) is infinite, then rp(G) = |G[p]| and |G[p]| = |1 ·G[p]| ≥ c by CC.

(iii) → (iv). Since r(G) ≥ c, PS holds. It remains only to prove that G satisfies
CC. Let m ≥ 1 and n ≥ 1 be arbitrary integers. Assume, without loss of generality,
that mG[n] is infinite. This obviously yields n > 1, so let n = pr1

1 . . . prk
s be the

factorization of n with distinct primes p1, . . . , pk. Then G[n] =
⊕k

i=1G[pri
i ], and

hence mG[n] =
⊕k

i=1mG[pri
i ]. Since mG[n] is infinite, mG[p

rj

j ] must be infinite
for some j = 1, . . . , k. Then ρ = rpj

(G) ≥ c by (iii). Since G is divisible, the

pj-torsion part Gpj
=
⋃

n∈ω G[pn
j ] of G is divisible too11, and hence Gpj

∼= Z(p∞j )(ρ)

by [24, Theorem 23.1]. Therefore, G[p
rj

j ] ∼= Z(p
rj

j )(ρ). Since the group mG[p
rj

j ] is

infinite, m does not divide p
rj

j . In particular, mZ(p
rj

j ) 6= {0}. This proves that

mG[p
rj

j ] ∼=
(
mZ(p

rj

j )
)(ρ)

has size ρ, and so |mG[n]| ≥ |mG[p
rj

j ] = ρ ≥ c.

Proof of Theorem 2.22: The “only if” part is proved in Lemma 2.5(i). Let us
prove the “if” part. According to [12], an infinite cardinal τ is called admissible
provided that there exists a pseudocompact group of size τ (see also [14, Definition
3.1(i)]). We need to consider two cases.

Case 1 . G is not torsion. Then PS implies r(G) ≥ c, and therefore we have
c = cω ≤ r(G) ≤ |G| ≤ 2c. Now the existence of a pseudocompact group topology
on G follows from [12, Theorem 6.4] or [14, Corollary 7.4] (where one needs to take
τ = c).

Case 2 . G is torsion. By item (i) of Lemma 2.4, G is a bounded torsion group, and
thus G[n] = G for some natural number n ≥ 1. Item (vi) of Lemma 2.4 implies that
G satisfies CC. Therefore, for every m ∈ ω \ {0}, the group mG[n] is either finite
or satisfies the inequality c ≤ |mG[n]| ≤ |G| ≤ 2c. In the latter case, the cardinal
|mG[n]| is admissible by items (i) and (ii) of [14, Lemma 3.4]. Now the existence
of a pseudocompact group topology on G[n] (= G) follows from the implication (d)
→ (a) of [14, Theorem 6.2].

11Recall that a subgroup H of an Abelian group G is pure (in G) provided that nH = nG ∩H
for every n ∈ ω. Note that Gpj

is a pure subgroup of t(G) (being its direct summand). Since t(G)
is a pure subgroup of G and purity is transitive, it follows that Gpj

is a pure subgroup of G. Now
it remains only to note that every pure subgroup of a divisible Abelian group is divisible.
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Proof of Theorem 2.28: To get implication (i)→(ii), combine implication (ii)→(iv)
of Theorem 2.6 with two facts: an S-space must be infinite, and an infinite pseu-
docompact group has size at least c [20, Proposition 1.3 (a)]. To prove (ii)→(i),
combine implication (iv)→(iii) of Theorem 2.6 with the fact that pseudocompact
Lindelöf spaces are compact.

Proof of Theorem 2.27: The implication (ii)→(i) is trivial. To prove (i)→(iii),
let G be an S-space. Then |G| ≤ 2c because G is separable [43]. Since G is not
Lindelöf, G cannot be countable, and thus |G| > ω. Since ∇κ implies ω1 = c (see
Definition 5.3), one gets |G| ≥ c.

Let us prove that (iii)→(ii). Let G be an Abelian group such that c ≤ |G| ≤ 2c.
If r(G) ≥ c, then G satisfies PS and tCC (see item (v) of Lemma 2.4), and so we
can apply Theorem 2.28 (that has been proved by now) to get a pseudocompact
group topology on G that makes G into an S-space. Since pseudocompact groups
are precompact [8], we are done in this case. It remains only to consider the case
r(G) < c. Since c ≤ |G| = max{r(G), supp∈P rp(G)} and cf(c) > ω, we can fix
p ∈ P with rp(G) ≥ c. Therefore |G[p]| ≥ c and G[p] satisfies CC. Since G[p] is a
bounded torsion group, it satisfies PS by Lemma 2.4(i). Finally, |G[p]| ≤ |G| ≤ 2c.
Applying Lemma 9.2 to the group G[p] we can find a monomorphism φ : G[p] → Hκ

such that πκ(φ(G[p])) is countably compact. Since ∇κ implies 2c = κ (see Definition
5.3), |G[p]| ≤ 2c = κ = r(Hκ), and |G[p]| ≤ 2c = κ = rq(Hκ) for every q ∈ P.
Since Hκ is divisible, we can apply Lemma 3.17 (with G[p] as G′ and Hκ as H)
to get a monomorphism ϕ : G → Hκ extending φ. Note that πκ(ϕ(G)) is alge-
braically isomorphic to G. Being a subgroup of the compact group T ω1 , πκ(ϕ(G))
is totally bounded. Since πκ(Hκ) is hereditarily separable (Lemma 7.7), To prove
that πκ(ϕ(G)) is an S-space, it remains only to check that πκ(ϕ(G)) is not Lindelöf.
Observe that πκ(φ(G[p])) = πκ(ϕ(G[p])) = πκ(ϕ(G))[p], and therefore πκ(φ(G[p]))
is a (unconditionally) closed subgroup of the group πκ(ϕ(G)). If the latter group
were Lindelöf, its closed subgroup πκ(φ(G[p])) would be Lindelöf as well. Being
countably compact, πκ(φ(G[p])) must then be compact. Now πκ(φ(G[p])) must be
finite by virtue of πκ(φ(G[p])) ⊆ Hκ and Lemma 8.1. Since πκ is a monomorphism
(Lemma 12.5), and so is φ, one concludes that G[p] ought to be finte as well, in
contradiction with |G[p]| ≥ c.

Proof of Theorem 2.29: Since countable compactness implies pseudocompact-
ness, the proof of this theorem is similar to that of Theorem 2.28, with reference to
Theorem 2.6 replaced by reference to Theorem 2.7.

11. Forcing

Let κ ≥ ω2 be a fixed cardinal. We note that the group Hκ from Definition 5.2 is
absolute, i.e. it does not change depending on the model. Our forcing construction
uses some ideas from Malyhin’s exposition [38, 5.4] of forcing notion due to Hajnal
and Juhász [26].
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Definition 11.1. (1) Let Pκ be the set of all structures p = 〈αp, Hp, πp, Ep〉 where:
(ip) α

p ∈ ω1,
(iip) H

p is a countable subgroup of Hκ,
(iiip) π

p : Hp → T αp
is a group homomorphism,

(ivp) Ep ∈ [[Hp]ω]≤ω, and
(vp) if A ∈ [αp]<ω, φ ∈ T[0]A, k ∈ ω \ {0}, E ∈ Ep and the set

EA,φ,k,πp = {h ∈ E : ∀α ∈ A |πp(h)(α)− φ(α)| < 1/k}
is infinite, then EA,φ,k,πp ∈ Ep.

(2) For p, q ∈ Pκ we define q ≤ p provided that the following holds:
(iqp) α

p ≤ αq,
(iiqp) H

p ⊆ Hq,
(iiiqp) π

q(h)�αp= πp(h) for every h ∈ Hp, and

(ivq
p) if n ∈ ω, A ∈ [αq \ αp]<ω, φ ∈ T[n]A, k ∈ ω \ {0} and E ∈ Ep is almost

n-torsion in Hκ, then the set EA,φ,k,πq is infinite.

We should note explicitly that we allow A = ∅ and φ = ∅ in the definition of
the set EA,φ,k,πp in condition (vp), and we define E∅,∅,k,πp = E. (Incidentally, the
last equality also follows from the formal definition of E∅,∅,k,πp since the defining
restriction simply vanishes.) Observe that condition (ivq

p) is vacuously satisfied
when αq = αp. Furthermore, if αq = αp, then condition (iiiqp) simply means that

the homomorphism πq : Hq → T αq
= T αp

is an extension of the homomorphism
πp : Hp → T αp

over Hq ⊇ Hp.

Lemma 11.2. (Pκ,≤) is a partially ordered set.

Proof. It is clear that the relation ≤ is reflexive and asymmetric, so it remains only
to check transitivity of ≤.

Let p, q, r ∈ Pκ, p ≤ q and q ≤ r. Conditions (irp), (iirp) and (iiirp) immediately
follow from correspondent pairs of conditions (iqp), (irq), (iiqp), (iirq), (iiiqp) and (iiirq).

Let us check (ivr
p). Assume E ∈ Ep is almost n-torsion in Hκ for some n ∈ ω,

A ∈ [αr \ αp]<ω, φ ∈ T[n]A and k ∈ ω \ {0}. We need to show that the set EA,φ,k,πr

is infinite. Define Aq = A∩ (αq \αp), Ar = A∩ (αr \αq), φq = φ�Aq and φr = φ�Ar .
(Note that we cannot exclude the case Aq = φq = ∅ or Ar = φr = ∅ or even both.)
Apply condition (ivq

p) to Aq ∈ [αq \ αp]<ω, φq ∈ T[n]A
q
, k ∈ ω \ {0} and E ∈ Ep

to conclude that the set EAq ,φq ,k,πq is infinite, and condition (vq) now implies that
EAq ,φq ,k,πq ∈ Eq. Note that EAq ,φq ,k,πq is an infinite subset of an almost n-torsion
set E, so EAq ,φq ,k,πq itself is almost n-torsion. We can now apply condition (ivr

q)

to Ar ∈ [αr \ αq]<ω, φr ∈ T[n]A
r
, k ∈ ω \ {0} and EAq ,φq ,k,πq ∈ Eq to conclude

that the set (Eq
Aq ,φq ,k,πq)Ar,φr,k,πr is infinite. Finally, note that (EAq ,φq ,k,πq)Ar,φr,k,πr =

EA,φ,k,πr . �

Lemma 11.3. If {pn : n ∈ ω} ⊆ Pκ and p0 ≥ p1 ≥ · · · ≥ pn ≥ pn+1 ≥ · · · , then
there exists p ∈ Pκ such that αp =

⋃{αpn : n ∈ ω} and p ≤ pn for all n ∈ ω.
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Proof. Let αp =
⋃{αpn : n ∈ ω}, Hp =

⋃{Hpn : n ∈ ω}, Ep =
⋃{Epn : n ∈ ω} and

πp : Hp → T αp
be the map defined by πp(h) =

⋃{πpn(h) : n ∈ ω, h ∈ Hpn} for each
h ∈ Hp. Conditions (ip) through (ivp) are straightforward. To check (vp), assume
that A ∈ [αp]<ω, φ ∈ T[0]A, k ∈ ω \ {0}, E ∈ Ep and the set EA,φ,k,πp is infinite.
Since A ⊆ αp =

⋃{αpn : n ∈ ω} is a finite set and E ∈ Ep =
⋃{Epn : n ∈ ω}, there

exists n ∈ ω such that A ⊆ αpn and E ∈ Epn . Observe that EA,φ,k,πp = EA,φ,k,πpn and
thus the latter set is infinite. Now (vpn) implies EA,φ,k,πp = EA,φ,k,πpn ∈ Epn ⊆ Ep.
Thus, p = 〈αp, Hp, πp, Ep〉 ∈ Pκ.

Let us check that p ≤ pn for all n ∈ ω. Fix n ∈ ω. Conditions (ippn
), (iippn

) and

(iiippn
) are clear. To check (ivp

pn
), assume that i ∈ ω, A ∈ [αp \ αpn ]<ω, φ ∈ T[n]A,

k ∈ ω \ {0} and E ∈ Epn is almost i-torsion in Hκ. We need to show that EA,φ,k,πp

is an infinite set. Pick m ∈ ω such that i < m and A ∈ [αpm \ αpn ]<ω. Condition
(ivpm

pn
) implies that the set EA,φ,k,πpm is infinite. Since EA,φ,k,πpm = EA,φ,k,πp , the

result follows. �

Lemma 11.4. Assume CH. Then (Pκ,≤) is ω2-c.c.

Proof. Suppose that {pβ : β ∈ ω2} ⊆ Pκ. There exist Γ ∈ [ω2]
ω2 and α ∈ ω1 such

that αpγ = α for all γ ∈ Γ. Since CH holds, by the ∆-system lemma applied to the
family {Hpγ : γ ∈ Γ} there exist Γ′ ∈ [Γ]ω2 and K ⊆ Hκ such that Hpβ ∩Hpγ = K
whenever β, γ ∈ Γ′ and β 6= γ [37, Chapter II, Theorem 1.6]. Applying CH once
again, we can find Γ′′ ∈ [Γ′]ω2 such that πpβ(h) = πpγ (h) whenever h ∈ K, β, γ ∈ Γ′′

and β 6= γ. We now claim that the family {pγ : γ ∈ Γ′′} consists of pairwise
compatible conditions. Indeed, let β, γ ∈ Γ′′ and β 6= γ. Define αr = α, Hr = Hpβ +
Hpγ , Er = Epβ ∪ Epγ and let πr : Hr → T αr

= T α be the homomorphism extending
both πpβ and πpγ (Lemma 3.1). It is easy to check that r = 〈αr, Hr, πr, Er〉 ∈ Pκ,
r ≤ pβ and r ≤ pγ. �

Lemma 11.5. If p ∈ Pκ and E ∈ [Hκ]
≤ω, then there exists q ∈ Pκ such that q ≤ p

and E ⊆ Hq.

Proof. If E ⊆ Hp, then q = p works. Otherwise define αq = αp, Hq = Hp + 〈〈E〉〉,
Eq = Ep and let πq : Hq → T αq

= T αp
be any homomorphism extending πp

(such a homomorphism exists by Lemma 3.2 since the group T αq
is divisible). Now

q = 〈αq, Hq, πq, Eq〉 does the job. �

Lemma 11.6. Given αq ∈ ω1, a countable subgroup Hq of Hκ, a homomorphism
πq : Hq → T αq

and E ∈ [[Hq]ω]≤ω, there exists Eq ∈ [[Hq]ω]≤ω such that E ⊆ Eq and
condition (vq) holds.

Proof. For every family C ∈ [[Hq]ω]≤ω define C ′ = C ∪ {EA,φ,k,πq : C ∈ C, A ∈
[αq]<ω, φ ∈ T[0]A, k ∈ ω \ {0}, EA,φ,k,πq is infinite}. Clearly C ′ ∈ [[Hq]ω]≤ω. By
induction on n ∈ ω, define En ∈ [[Hq]ω]≤ω as follows. Let E0 = E , and En+1 = E ′n for
every n ∈ ω. It is easy to see that Eq =

⋃{En : n ∈ ω} satisfies the conclusion of
our lemma. �
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Lemma 11.7. If p ∈ Pκ and E ∈ [Hκ]
ω, then there exists q ∈ Pκ such that q ≤ p

and E ∈ Eq.

Proof. Lemma 11.5 allows us to find r ∈ Pκ such that r ≤ p and E ⊆ Hr. In
particular, E ⊆ [Hr]ω. Apply Lemma 11.6 to αq = αr, Hq = Hr, πq = πr and
E = Er ∪{E} to get Eq ∈ [[Hq]ω]≤ω such that E ⊆ Eq and condition (vq) holds. Now
q = 〈αq, Hq, πq, Eq〉 ∈ Pκ is as required. �

Lemma 11.8. If p ∈ Pκ, g ∈ Hp and g 6= 0, then there exists q ∈ Pκ such that
q ≤ p, αq = αp + 1 and πq(g) 6= 0.

Proof. Let αq = αp +1 and Hq = Hp. Apply Lemma 4.10 to G = Hp, g and E = Ep

to get a homomorphism $ : G→ T as in the conclusion of this lemma. Define now
a homomorphism πq : G → T αq

= T αp+1 = T αp × T by πq(h) = (πp(h), $(h)) for
h ∈ G. Since $(g) 6= 0, we have πq(g) 6= 0, as required. Finally, apply Lemma 11.6
to E = Ep to choose Eq ∈ [[Hq]ω]≤ω such that Ep ⊆ Eq and condition (vq) holds. It
is clear from our construction that q = 〈αq, Hq, πq, Eq〉 ∈ Pκ.

Let us prove that q ≤ p. Conditions (iqp), (iiqp) and (iiiqp) are immediate from
our construction. It remains only to verify condition (ivq

p). Assume that n ∈ ω,

A ∈ [αq \ αp]<ω, φ ∈ T[n]A, k ∈ ω \ {0} and E ∈ Ep is almost n-torsion in
Hκ. Since αq \ αp = {αp}, either A = ∅ or A = {αp}. If A = ∅, then φ = ∅,
EA,φ,k,πq = E∅,∅,k,πq = E and the latter set is infinite. Otherwise A = {αp} and
φ = {〈αp, z〉} for some z ∈ T[n]. By our choice of $ the set EA,φ,k,πq = {h ∈ E :
|πq(h)(αp)− φ(αp)| < 1/k} = {h ∈ E : |$(h)− z| < 1/k} is infinite. �

Lemma 11.9. For every p ∈ Pκ there exists q ∈ Pκ such that q ≤ p and πq �Hp :
Hp → T αq

is a monomorphism.

Proof. Without loss of generality, we may assume that Hp is infinite (Lemma 11.5).
Let Hp = {hn : n ∈ ω} be an enumeration of points of Hp. By induction on n, we
repeatedly use Lemma 11.8 to obtain a decreasing sequence p = p0 ≥ p1 ≥ · · · ≥
pn ≥ pn+1 ≥ . . . of elements of Pκ such that πpn(hn) 6= 0. Choose p ∈ Pκ such that
p ≤ pn for all n (Lemma 11.3). Condition (iiippn

) implies that πp(hn) 6= 0 for each n.

Thus the kernel of πq �Hp : Hp → T αq
is trivial. �

Lemma 11.10. If p ∈ Pκ and β ∈ ω1, then there exists q ∈ Pκ such that q ≤ p and
β ∈ αq.

Proof. Lemma 11.5 guarantees the existence of pαp ∈ Pκ such that pαp ≤ p and
Hpαp 6= {0}. Pick g ∈ Hpαp with g 6= 0. By transfinite recursion on γ ∈ ω1 \ αp, we
will construct pγ ∈ Pκ such that:

(1γ) α
pγ = γ,

(2γ) α < α′ ≤ γ implies pα′ ≤ pα.
Clearly pαp ∈ Pκ satisfies (1αp) and (2αp). Suppose now that we have already

constructed {pα : α ∈ γ \ αp} for some γ ∈ ω1 \ αp.
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If γ is a limit ordinal, then we can pick a strictly increasing sequence {γn : n ∈ ω}
of ordinals cofinal in γ and apply Lemma 11.3 to find pγ ∈ Pκ such that αpγ =⋃{αpγn : n ∈ ω} =

⋃{γn : n ∈ ω} = γ and pγ ≤ pγn for all n ∈ ω. If δ < γ, then
δ < γn for some n, and thus pγ ≤ pγn ≤ pδ. This yields (2γ).

If γ = δ + 1 is a successor ordinal, then pδ ≤ pαp implies g ∈ Hpαp ⊆ Hpδ , and
therefore we can apply Lemma 11.8 with pδ as p (and our g) to find pγ ∈ Pκ such
that αpγ = αpδ + 1 = δ + 1 = γ and pγ ≤ pδ.

To finish the proof, notice that pβ+1 can be taken as q. �

12. Proof of Con(ZFC+c = ω1&2ω1 = κ)−→Con(ZFC+∇κ)

Let Mκ be a model of ZFC such that κ ∈ Mκ, Pκ ∈ Mκ and both c = ω1 and
2ω1 = κ hold in Mκ. Let G ⊆ Pκ be a set Pκ-generic over Mκ, and Mκ[G] the generic
extension of Mκ via G.

Lemma 12.1. Forcing with Pκ preserves cardinals.

Proof. From Lemma 11.3 it follows that the poset Pκ is countably closed (or ω1-
closed in the terminology of [37]), and thus forcing with Pκ preserves cardinal ω1

[37, Chapter VII, Corollary 6.15]. From Lemma 11.4, the fact that CH holds in
the ground model Mκ and [37, Chapter VII, Lemma 6.9] one concludes that forcing
with Pκ does not collapse cardinals greater or equal than ω2. It now follows that all
cardinals are preserved by Pκ. �

Lemma 12.2. Pκ does not introduce new countable sets. That is, if B ∈ Mκ,
C ∈Mκ[G], C ⊆ B and C is countable in Mκ[G], then C ∈Mκ.

Proof. Since C ⊆ B and C is countable in Mκ[G], there exists a function f : ω → B
such that C = f(ω) and f ∈ Mκ[G]. Lemma 11.3 says that Pκ is countably closed
(or ω1-closed in the terminology of [37]), so applying [37, Chapter VII, Theorem
6.14] (with A = ω and λ = ω1) yields f ∈ Mκ. Since ω ∈ Mκ, f ∈ Mκ and Mκ is a
model of ZFC, it now follows that C = f(ω) ∈Mκ. �

From Lemmas 11.5 and Lemma 11.10 we obtain

Lemma 12.3. In Mκ[G], we have Hκ =
⋃{Hp : p ∈ G} and ω1 =

⋃{αp : p ∈ G}.
In Mκ[G], for each h ∈ Hκ define πκ(h) =

⋃{πp(h) : p ∈ G, h ∈ Hp}.
Lemma 12.4. (i) πκ(h) ∈ T ω1 for every h ∈ Hκ.

(ii) If p ∈ G and h ∈ Hp, then πκ(h)�αp= πp(h).

Proof. This follows via standard argument from (iiip), (iiiqp) and the fact that G
consists of pairwise compatible elements. �

Lemma 12.5. In Mκ[G], πκ : Hκ → T ω1 is a monomorphism.

Proof. Conditions (iiip) and (iiiqp) imply that πκ is a group homomorphism. Lemma
11.8 and standard density argument yields that the kernel of πκ is trivial. �
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By the above lemma, πκ(Hκ) is a subgroup of T ω1 algebraically isomorphic to
Hκ. In Mκ[G], we will always consider T ω1 equipped with the Tychonoff product
topology. Recall that T ω1 is compact.

Lemma 12.6. In Mκ[G], c = ω1 and 2ω1 = 2c = κ.

Proof. According to Lemma 12.2, the values of 2ω = c in both models Mκ and Mκ[G]
coincide. Since ω1 = c holds in Mκ, and ω1 is preserved (Lemma 12.1), we conclude
that ω1 = c holds in Mκ[G] as well.

Lemma 12.5 implies that κ = |Hκ| ≤ |T ω1| = cω1 ≤ (2ω1)ω1 = 2ω1 holds in Mκ[G].
It remains only to show that the reverse inequality 2ω1 ≤ κ holds in Mκ[G].

First, observe that, in Mκ, one has κω1 = (2ω1)ω1 = 2ω1 = κ. In particular, κω = κ
holds in Mκ.

Second, we claim that |Pκ| = κ in Mκ. Indeed, in Mκ, we have |Hκ| = κ, which
implies |[Hκ]

≤ω| ≤ κω = κ and |[[Hκ]
ω]≤ω| ≤ κω = κ, and thus the number of

group homomorphisms πκ : H → T α with H ∈ [Hκ]
≤ω and α ∈ ω1 is bounded by

κ · ω1 · cω = κ.
Third, since CH holds in Mκ, every antichain in (Pκ,≤) that is an element of Mκ

has size at most ω1 (Lemma 11.4). Therefore, in Mκ, the total number of antichains
in (Pκ,≤) does not exceed |Pω1

κ | = κω1 = κ. This yields that the number of nice
Pκ-names (in the sense of [37, Chapter VII, Definition 5.11]) in Mκ for subsets of
ω1 does not exceed κω1 = κ. Arguing as in the end of the proof of [37, Chapter VII,
Lemma 5.13], we can now conclude that 2ω1 ≤ κ holds in Mκ[G]. �

Lemma 12.7. In Mκ[G], if n ∈ ω \ {1} and E is an almost n-torsion subset of Hκ,
then there exists γ ∈ ω1 such that the set {πκ(h)�ω1\γ: h ∈ E} is dense in T[n]ω1\γ.

Proof. For n ∈ ω, let E be an almost n-torsion subset of Hκ. Using Lemma 11.7 and
a standard density argument we conclude that there exists p ∈ G such that E ∈ Ep.
We claim that γ = αp works. Since T[0]ω1\γ is dense in T ω1\γ, it suffices to check the
following property: If A ∈ [ω1 \ γ]<ω, φ ∈ T[n]A and k ∈ ω \ {0}, then there exists
h ∈ E such that |πκ(h)(α) − φ(α)| < 1/k for each α ∈ A. By Lemma 11.10 and
the standard density argument, one can find q ∈ G such that q ≤ p and A ⊆ αq.
Observe that A ∈ [αq \ γ]<ω = [αq \ αp]<ω, and the condition (ivq

p) implies that the
set EA,φ,k,πq is infinite. Pick arbitrarily h ∈ EA,φ,k,πq and note that, according to the
definition of EA,φ,k,πq , one has h ∈ E and |πq(h)(α) − φ(α)| < 1/k for each α ∈ A.
Finally, A ⊆ αq and Lemma 12.4(ii) yield πq(h)(α) = π(h)(α) for every α ∈ A. �

Recall that Kn = T[n](ω1) when n > 1 and K0 = Z(ω1), see Definition 5.1(i).

Lemma 12.8. Suppose that p ∈ Pκ, β ∈ ω1, n ∈ ω \ {1}, y ∈ Tβ with ny = 0, and
N is an uncountable subgroup of Hκ isomorphic to Kn. Then there exist q ∈ Pκ and
x ∈ N ∩Hq such that β ∈ αq and πq(x)�β= y.

Proof. By our assumption, we can write N =
⊕

α∈ω1
Cα, where each Cα is alge-

braically isomorphic to T[n] when n > 1 and to Z when n = 0. By Lemma
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11.10, there exists r ∈ Pκ such that r ≤ p and β ∈ αr. Pick arbitrarily ele-
ment y′ ∈ T αr

with y′ �β= y and ny′ = 0. Observe that there must exist α ∈ ω1

such that Cα ∩ Hr = {0}. Indeed, otherwise, for each α ∈ ω1 there would exist
hα ∈ Cα ∩ Hp \ {0}, and all these elements hα must be pairwise distinct (because
Cα ∩Cβ = {0} for α 6= β), thereby implying |Hr| = ω1, a contradiction. Fix α ∈ ω1

with Cα ∩ Hr = {0}, and let x be any generator of the cyclic group Cα. By the
choice of x, there exists a group homomorphism ϕ : 〈〈x〉〉 → 〈〈y′〉〉 such that ϕ(x) = y′.
Define αq = αr, Eq = Er, Hq = Hr + 〈〈x〉〉, and let πq : Hr → T αq

= T αr
be a group

homomorphism which extends both πr and ϕ. (Such a homomorphism exists by
Lemma 3.1 because 〈〈x〉〉 ∩ Hr = Cα ∩ Hr = {0}.) Then q = 〈αq, Hq, πq, Eq〉 is as
required. �

Lemma 12.9. In the ground model Mκ, let N be a subgroup of Hκ isomorphic to
Kn for some n ∈ ω \ {1}. Then, in the generic extension Mκ[G], the image πκ(E)
of every almost n-torsion set E ⊆ Hκ has a cluster point in πκ(N).

Proof. We will need a piece of notation. For γ ∈ ω1 + 1, A ∈ [γ]<ω, ψ : A→ T and
m ≥ 1 we define

Vγ(A,ψ,m) = {f ∈ T γ : ∀α ∈ A |f(α)− ψ(α)| < 1/m}.

Assume that E ∈Mκ[G] is an almost n-torsion subset ofHκ. Since E is countable,
E ∈Mκ by Lemma 12.2. Using Lemmas 11.9 and 11.7 we can find p ∈ G such that
E ∈ Ep (and thus E ∈ [Hp]ω) and πp �E: E → T αp

is an injection. The latter
condition implies that πp(E) is a countable infinite subset of the compact space
T αp

, and hence πp(E) must have a cluster point y ∈ T αp
.

If n = 0, then the reader should skip this paragraph and go directly to the next
paragraph. Otherwise, we have n > 1 and E ⊆ Hκ[n], by the definition of almost
n-torsion set. Since πp is a group homomorphism, πp(E) ⊆ πp(Hκ[n]) ⊆ T[n]α

p
.

Since the set T[n]α
p

is closed, it follows that y ∈ T[n]α
p
, and therefore ny = 0.

Lemma 12.8 and standard density argument allow us to find q ∈ G and x ∈ K∩Hq

such that q ≤ p and πq(x)�αp= y.
If n = 0, then the reader should again skip this paragraph. Otherwise n > 1, and

since Kn
∼= K ⊆ Hκ and x ∈ K, we have x ∈ Hκ[n]. Then πκ(x) ∈ πκ(Hκ[n]) ⊆

T[n]ω1 because πκ is a group homomorphism.
Let us prove that πκ(x) is a cluster point of πκ(E). Suppose that O is an open

subset of T ω1 such that πκ(x) ∈ O. There exist A ∈ [ω1]
<ω, ψ : A → T and m ≥ 1

such that πκ(x) ∈ Vω1(A,ψ,m) ⊆ O. Since T[0] is dense in T (and πκ(x) ∈ T[n]ω1

when n > 1), we can find φ : A→ T[n] and k ≥ 1 such that πκ(x) ∈ Vω1(A, φ, k) ⊆
Vω1(A,ψ,m). Lemma 11.10 and a standard density argument imply the existence
of some r ∈ G with r ≤ q and A ∈ [αr]<ω. Define Ap = A ∩ αp, φp = φ �Ap ,
Ar = A ∩ (αr \ αp) = A \ Ap and φr = φ �Ar . Since πκ(x) ∈ Vω1(A, φ, k), it follows
that y = πp(x) �αp∈ Vαp(Ap, φp, k). Since y is a cluster point of πp(E) in T αp

and
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the set Vαp(Ap, φp, k) is open in T αp
, the intersection

πp(E) ∩ Vαp(Ap, φp, k) = {h ∈ E : πp(h) ∈ Vαp(Ap, φp, k)} = EAp,φp,k,πp

must be infinite as πp is a monomorphism. Since E ∈ Ep, we conclude that
EAp,φp,k,πp ∈ Ep by condition (vp). Being an infinite subset of an almost n-torsion set
E, EAp,φp,k,πp is also almost n-torsion. Applying condition (ivr

p) to Ar ∈ [αr \ αp]<ω

φr ∈ T[n]A
r
, k and EAp,φp,k,πp , we conclude that the set

(EAp,φp,k,πp)Ar,φr,k,πr = EA,φ,k,πr = {h ∈ E : πr(h) ∈ Vαr(A, φ, k)}
is infinite. Observe that

{h ∈ E : πr(h) ∈ Vαr(A, φ, k)} = {h ∈ E : πκ(h) ∈ Vω1(A, φ, k)}
by Lemma 12.4(ii), and so the intersection πκ(E)∩Vω1(A, φ, k) is also infinite. Since
Vω1(A, φ, k) ⊆ Vω1(A,ψ,m) ⊆ O, the set πκ(E) ∩ O must be infinite as well. We
have proved that every open neighborhood O of πκ(x) has an infinite intersection
with πκ(E), which yields that πκ(x) is a cluster point of πκ(E). �

Theorem 12.10. Con(ZFC + c = ω1&2ω1 = κ) −→ Con(ZFC +∇κ).

Proof. In the ground model Mκ, use Lemma 3.18 to fix a monomorphism θκ : K →
Hκ. We are going to prove that ∇κ holds in Mκ[G]. In view of Lemmas 12.5 and
12.6, it remains only to check that πκ and θκ satisfy conditions (Π1), (Π2) and (Π3)
from Definition 5.3.

(Π1) follows from Lemma 12.7.
(Π2) Let E ∈ [Hκ]

≤ω be an almost n-torsion subset of Hκ. Note that n ∈ ω \ {1}
and N = θκ(Kn) is a subgroup of Hκ that belongs to Mκ. Since θκ is a monomor-
phism, N ∼= Kn. Now Lemma 12.9 applies.

(Π3) Since θκ is a monomorphism from the ground model Mκ, the subgroup
N = θκ(K0) of Hκ belongs to Mκ and is isomorphic to K0. Now Lemma 12.8 (with
n = 0) and the standard density argument allow us to conclude that the following
holds in Mκ[G]: For every β ∈ ω1, ξβ(πκ(N)) = Tβ. This yields (Π3). �

13. Algebraic structure of compact metric Abelian groups

Recall that an Abelian group G is reduced if it does not have non-zero divisible
subgroups. We start with a well-known algebraic property of Abelian groups [24].

Lemma 13.1. Every Abelian group G admits a unique representation G = D(G)⊕
R(G), where D(G) is the maximal divisible subgroup of G, the subgroup R(G) ∼=
G/D(G) of G is reduced and

(9) D(G) ∼= Q(s) ⊕

⊕
p∈P

Z(p∞)(sp)

 ,
where s, sp for p ∈ P are suitable cardinals uniquely determined by G.
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While the description of Abelian groups admitting compact group topology is
well-known (see, for example, [30]), the case of metrizable compact groups cannot
be found in the literature. This is why we provide a complete self-contained proof
of this case in our next theorem.

Theorem 13.2. (1) An Abelian group G admits a compact (metric) group topology
if and only if both its divisible part D(G) and its reduced part R(G) admit a compact
(metric) group topology.

(2) D(G) admits a compact metric group topology if and only if the cardinals s
and sp (p ∈ P) from Lemma 13.1 satisfy the following conditions:

(2a) Either s = 0 or s = c,
(2b) For each p ∈ P, sp ≤ s holds, and either sp is finite or sp = c.

(3) R(G) admits a compact group topology if and only if

(10) R(G) ∼=
∏
p∈P

(
Zbp

p ×
∞∏

n=1

Z(pn)(an,p)

)
,

where the cardinals an,p are either finite or have the form an,p = 2dn,p.
(4) R(G) admits a compact metric group topology if and only if (10) holds and

the cardinals from (10) satisfy the following conditions:

(4a) bp ≤ ω for every p ∈ P,
(4b) For every p ∈ P and each n ∈ ω \ {0}, the cardinal an,p is either finite or

equal to c.

Proof. (1) The “if” part is clear. To prove the “only if” part, assume that G is a
compact (metric) group. The connected component c(G) of G is a closed subgroup
of G. Therefore, both c(G) (considered as a subspace of G) and the quotient group
G/c(G) are compact (metric) groups.

Since R(G) ∼= G/D(G), it remains only to prove that c(G) = D(G). It is a well-
known fact that a compact Abelian group is connected if and only if it is divisible
[30, Theorem 24.25].12 Hence c(G), being connected, is divisible. By maximality
of D(G) we have c(G) ⊆ D(G). The closure H of D(G) in G is a compact group.
Let n ∈ ω \ {0}. Being the image of the compact set H under the continuous map
that sends h to nh, the set nH is compact as well. In particular, nH is closed in
G. Note that D(G) = nD(G) ⊆ nH by divisibility of D(G), and hence H ⊆ nH.
We have proved that H ⊆ nH for every n ∈ ω \ {0}, which yields divisibility of H.
Applying the result cited in the beginning of this paragraph to the compact group
H, we conclude that H is connected, and so D(G) ⊆ H ⊆ c(G).

(2) According to [30, Theorems 25.23, 25.24], D(G) admits a compact metrizable
group topology if and only if either D(G) = {0} (i.e., s = sp = 0 for each p ∈ P) or
s = c and, for each p ∈ P, the cardinals sp take only finite values or c.

12For a comment on the counterpart of this property in the non-compact case see Example
14.14.



FORCING HEREDITARILY SEPARABLE GROUP TOPOLOGIES 45

(3) According to [30, Theorem 25.22], the reduced part R(G) admits a compact
group topology if and only if (10) holds for suitable cardinals bp and an,p.

(4) To prove the “if” part, assume that (10) holds, where the cardinals bp and
an,p satisfy conditions (4a) and (4b).

Then for p ∈ P and n ∈ ω\{0} the group Z(pn)(an,p) is either finite, or algebraically
isomorphic to Z(pn)ω. In both cases it carries a compact metrizable group topology.
The product topology of the group Zbp

p is also a compact metrizable group topology.
Now the product topology on the product in (10) is a compact metrizable group
topology for R(G).

Before proceeding with the rest of the proof, recall that a subgroup H of an
Abelian group G is pure (in G) provided that nH = nG ∩H for every n ∈ ω.

To prove the “only if” part, assume that R(G) is equipped with a compact metriz-
able group topology. SinceD(R(G)) = {0}, this topology is totally disconnected [11,
Corollary 3.3.9]. Hence the Pontryagin dual X of G is a torsion countable group [30,
Theorems 24.15, 24.26]. Let X =

⊕
p∈PXp, where Xp is the p-torsion subgroup of

X. According to [24, §33], Xp admits a p-basic subgroup Bp, i.e., a pure subgroup Bp

such that Xp/Bp is divisible, so Xp/Bp
∼= Z(p∞)(bp), and Bp =

⊕
n∈ω\{0} Z(pn)(rn,p)

with bp ≤ ω and rn,p ≤ ω. Consequently, the compact Pontryagin dual Kp of Xp has
a closed subgroup Np = A(Bp) (the annihilator of Bp) such that Np is isomorphic
to the dual of the divisible quotient Xp/Bp, hence

(11) Np
∼= Zbp

p and Kp/Np
∼=

∏
n∈ω\{0}

Z(pn)rn,p ,

the group Kp/Np being isomorphic to the dual of Bp.

Claim 1. For each p ∈ P, Np is a pure subgroup of Kp.

Proof. For n ∈ ω let B = {x ∈ Xp : nx ∈ Bp}, so that nKp = A(B) is the annihilator
of B in Kp. By the purity of Bp one can easily deduce that B = Xp[n]+Bp. Indeed,
if nx ∈ Bp for some x ∈ Xp, then nx ∈ Bp∩nXp = nBp, so nx = nb for some b ∈ Bp

and consequently x− b ∈ Xp[n]. Taking annihilators we get

nNp = nA(Bp) = A(B) = A(Xp[n] +Bp) = A(Xp[n]) ∩ A(Bp) = nKp ∩Np.

This proves that Np is a pure subgroup of Kp. �

According to [30, Theorem 25.21] and the above claim, the subgroup Np of Kp is
a direct factor of Kp, i.e., Kp

∼= Np × Kp/Bp. Since R(G) ∼=
∏

p∈PKp, (11) yields

(10), since Z(pn)rn,p ∼= Z(pn)(an,p), where an,p = rn,p if the latter cardinal is finite,
otherwise an,p = 2rn,p = c when rn,p = ω. �

As an easy application of the above theorem, we can see that some well-known
groups do not admit compact group topologies.

Example 13.3. Neither the Specker group Zω, nor any free Abelian group admit a
compact group topology. Indeed, let G be either the Specker group or a free Abelian
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group. Assume that G has a compact group topology. Since D(G) = {0}, from
Theorem 13.1 it follows that G ∼= R(G), and therefore G must have the form (10)
in view of item (3) of Theorem 13.2. Since G is torsion free, all an,p are zero. Hence
G =

∏
p∈P Zbp

p . Assume that bp 6= 0 for some prime p. Then, for every prime q 6= p,

the subgroup H = Zbp
p of G is q-divisible, i.e., qH = H 6= 0. On the other hand,

it is easy to see that
⋂

n∈ω q
nG = {0}, a contradiction since this intersection must

contain the non-zero subgroup H.

Example 13.4. Let G be either the Specker group G = Zω or the free Abelian
group of size c. Then the existence of a hereditarily separable pseudocompact group
topology on G is both consistent with and independent of ZFC . Indeed, our previous
example and Theorem 2.8 imply that G does not admit a hereditarily separable
pseudocompact group topology in any model of ZFC in which there are no S-spaces.
On the other hand, according to Theorem 2.11, under ∇κ, the group G admits
a hereditarily separable, pseudocompact, connected and locally connected group
topology without infinite compact subsets.

14. Final remarks and open problems

The reader may wonder if weaker versions of our main results, with “hereditarily
separable” weakened to “separable”, can be proved in ZFC. The following three
theorems providing a positive answer to this question are particular cases of general
results from [16].

Theorem 14.1. The following conditions are equivalent for any Abelian group G:
(i) G has a separable group topology,
(ii) G has a separable precompact group topology,
(iii) |G| ≤ 2c.

Theorem 14.2. The following conditions are equivalent for any Abelian group G:
(i) G admits a separable pseudocompact group topology,
(ii) |G| ≤ 2c and G satisfies both PS and tCC.

Theorem 14.3. The following conditions are equivalent for any Abelian group G:
(i) G admits a separable connected precompact group topology,
(ii) G admits a separable connected and locally connected pseudocompact group

topology,
(iii) G is non-torsion and admits a separable pseudocompact group topology,
(iv) G is a non-torsion group satisfying both |G| ≤ 2c and PS,
(v) c ≤ r(G) ≤ |G| ≤ 2c.

In particular, the group Zω admits a separable connected, locally connected group
topology.

The lack of any ZFC results about separable countably compact topologies on
Abelian groups justifies our next problem:
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Problem 14.4. Describe in ZFC the algebraic structure of separable countably
compact Abelian groups.

The next question provides a natural hypothesis for the solution of the above
problem:

Question 14.5. Is it true in ZFC that an Abelian group G admits a separable
countably compact group topology if and only if |G| ≤ 2c and G satisfies both PS
and CC?

Question 14.6. Is it true in ZFC that an Abelian group G of size at most 2c admits
a countably compact group topology if and only if G satisfies both PS and CC?

Our Theorem 2.7 gives a strong positive consistent answer to both Questions
14.5 and 14.6. We hope that an answer to these two questions will not involve
set-theoretic complications described in Example 13.4.

Question 14.7. (i) Is it true in ZFC that the Specker group Zω admits a countably
compact group topology?

(ii) Does Zω has a separable countably compact group topology in ZFC?
(iii) In ZFC, does Zω admit a countably compact separable group topology with-

out non-trivial convergent sequences (without infinite compact subsets)?

Our Corollary 2.13 gives a strong consistent positive answer to (all items of) the
above question. The reader may also want to consult Example 13.4 for relevant
independence results.

Our next two questions are motivated by Corollary 2.20.

Question 14.8. Is there a torsion Abelian group that admits a pseudocompact
group topology but does not admit a countably compact group topology?

Question 14.9. Does there exist a torsion-free Abelian group that admits a pseudo-
compact group topology but does not admit a countably compact group topology?

Recall that an Abelian group G is called algebraically compact if there exists an
Abelian group H such that the direct sum G⊕H admits a compact group topology,
i.e. ifG is a direct summand of some compact group. (More precisely, Kaplansky [35]
introduced algebraically compact groups via several equivalent properties, including
this one.) Algebraically compact groups form a relatively narrow subclass of Abelian
groups (for example, the integers Z are not algebraically compact) that plays a
prominent role in the theory of infinite (abstract) Abelian groups. It has been shown
in [14, Theorem 8.15] that every Abelian group G is “algebraically pseudocompact”
in the sense that one can find an Abelian group H such that G ⊕ H admits a
pseudocompact group topology. This makes it natural to wonder whether this result
could be strengthened to show that every Abelian group is “algebraically countably
compact”:
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Question 14.10. Is every Abelian group a direct summand of an Abelian group
that admits a countably compact group topology?

Our next theorem provides a positive consistent answer to this question for
Abelian groups of small size:

Theorem 14.11. Under ∇κ, for every Abelian group G of size at most 2c there
exists an Abelian group H such that G ⊕ H admits a (hereditarily separable, con-
nected, locally connected) countably compact group topology (without infinite compact
subsets).

Proof. Let H = Hκ and A = G ⊕H. Since r(A) ≥ r(H) = 2c > c, A satisfies PS.
For every pair of integers m ≥ 1 and n ≥ 1, one has mA[n] = mG[n]⊕mH[n], and
so |mA[n]| ≥ |mH[n]| = 2c > c. Thus A satisfies CC. By Theorem 2.11 A admits
a (hereditarily separable, connected, locally connected) countably compact group
topology (without infinite compact subsets). �

It was proved in [18, Corollary 5.3] that a divisible Abelian group of size c admits a
countably compact group topology if and only if it admits a compact group topology.
Item (i) of our next example demonstrates that this equivalence no longer holds for
divisible Abelian groups of size bigger than c.

Example 14.12. Let p be a prime number and σ, τ cardinals satisfying c ≤ σ <
τ ≤ 2c, and let Gσ,τ = Z(p∞)(τ) ⊕Q(σ).

(i) Under ∇κ, the divisible group Gσ,τ admits a (hereditarily separable, connected,
locally connected) countably compact group topology (without infinite compact sub-
sets) but cannot be equipped with any compact group topology. Indeed, the existence
of the required countably compact group topology on Gσ,τ follows from Theorem
2.14. On the other hand, since r(G) = σ < τ = rp(G), Gσ,τ does not admit a
compact group topology by [30, Theorem 25.23] (see also Theorem 13.2).

(ii) In any model of ZFC without S-spaces, Gσ,τ does not admit a hereditarily
separable pseudocompact group topology. Indeed, as was noted above, Gσ,τ does not
admit a compact group topology, and now the conclusion follows from Theorem 2.8.

Combining (i) and (ii), we get
(iii) The existence of a hereditarily separable countably compact (or pseudocom-

pact) group topology on Gσ,τ is both consistent with and independent of ZFC.

Problem 14.13. In ZFC, give an example of a divisible Abelian group that admits
a countably compact group topology but does not admit a compact group topology.

Recall that divisible pseudocompact groups are connected [59]. We show in our
next example that (even) countably compact connected groups need not be divisible.

Example 14.14. A connected countably compact Abelian group that is not divisible.
Take K = Tc and let G = {x ∈ Tc : |{α ∈ c : x(α) 6= 0}| ≤ ω} be the Σ-product
of c-many copies of T considered as a subgroup of K. Let a be the only element of
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T of order 2 and let a ∈ K be the element having all coordinates equal to a. Then
C = 〈〈a〉〉 ∼= Z(2) trivially meets G, hence H = G + C = G ⊕ C is not divisible.
On the other hand, H is countably compact since every countable subset of H is
contained in a compact subgroup of H. As a dense countably compact subgroup of
the connected group K, the group H is connected too (see, for example, [14, Fact
2.10]).

We finish this paper with a series of questions related to the existence of convergent
sequences in compact-like groups.

Our Corollary 2.16 both motivates our next question and demonstrates that the
positive answer to it for Abelian groups of size at most 2c is consistent with ZFC.

Question 14.15. (i) Does every pseudocompact (Abelian) group admit a pseudo-
compact group topology without non-trivial convergent sequences (without infinite
compact subsets)?

(ii) Does every countably compact (Abelian) group admit a countably compact
group topology without non-trivial convergent sequences (without infinite compact
subsets)?

The next question, going in the opposite direction, may be considered as a “count-
ably compact heir” of Fact 1.2(i) that still has a chance of positive answer in ZFC.

Question 14.16. Let G be an infinite countably compact group. Does G have a
countably compact group topology that contains a non-trivial convergent sequence?

The pseudocompact variant of this question seems to be open as well.

Question 14.17. Let G be an infinite pseudocompact group. Does G have a pseu-
docompact group topology that contains a non-trivial convergent sequence?

The infinite symmetric group S(X) and the free group F (X) do not admit any
countably compact group topology (Proposition 1.3 and [12, Theorem 4.7]; see also
[14, Corollary 5.14]). These two examples are “highly non-commutative” in na-
ture. Since it appears to be so hard to get countably compact group topologies
on “highly non-commutative groups”, one might hope that when such groups do
admit a countably compact group topology, this topology must necessarily have a
non-trivial convergent sequence.

Recall that the derived subgroup G′ of a group G is the smallest subgroup of G
that contains the set {xyx−1y−1 : x, y ∈ G}. Obviously, G is Abelian if and only
if G′ is the trivial subgroup of G. A group G is called a perfect group if it satisfies
G′ = G.

Question 14.18. If G is an infinite countably compact group satisfying G′ = G,
must G have a non-trivial convergent sequence?

Question 14.19. Let G be an infinite countably compact group without open
Abelian subgroups. Does G have a non-trivial convergent sequence?
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At first look the requirement “without open Abelian subgroups” appears to be a
somewhat poor approximation of an the intuitive notion of “highly non-commutative
group”. Indeed, the following version of Question 14.19 seems to be a much better
choice for capturing that notion: If G is an infinite countably compact group with
trivial center Z(G) = {g ∈ G : xg = gx for each x ∈ G}, must G have a non-trivial
convergent sequence? Unfortunately, Example 14.21 below shows that this version
has a consistent negative answer. In order to construct a counter-example, we will
need a standard construction of a semidirect product.

Identify the cyclic group Z(2) with the multiplicative group {1,−1}. Let A be
an Abelian group. The semidirect product A o Z(2) of A and Z(2) with respect
to the action of Z(2) on A given by a 7→ −a is defined as the Cartesian product
A × Z(2) with operation (a, x) · (a′, x′) := (a + xa′, xx′). We identify A with the
subgroup A× {1} of Ao Z(2) via the map a 7→ (a, 1). If A is a topological group,
then A o Z(2) equipped with the product topology is a topological group. (Here
Z(2) carries the discrete topology.)

Proposition 14.20. Let A be a countably compact Abelian group and let G =
A o Z(2) be the semidirect product with respect to the action a 7→ −a of Z(2) on
A. Then the product topology makes G into a countably compact topological group
containing A as an open (normal) subgroup of index 2. Moreover,

(a) G is Abelian if and only if A is Boolean;
(b) G has trivial center if and only if r2(A) = 0;
(c) the derived subgroup G′ of G coincides with 2A× {1};
(d) G has non-trivial convergent sequence if and only if A does;
(e) G is (hereditarily) separable if and only if A is (hereditarily) separable;
(f) G is locally connected if and only if A is locally connected;
(g) G is totally disconnected if and only if A is totally disconnected.

Proof. (a) follows from the fact that the action of Z(2) on A is trivial if and only if
A is a Boolean group.

To verify (b) note that when A is not Boolean, then the center of G is precisely
A[2]× {1}.

(c) Under the identification of the subgroup A × {1} of G with A, the quotient
group G/2A ∼= Z(2) o Z(2) ∼= Z(2) × Z(2) is Abelian by item (b). This yields
G′ ⊆ 2A. To prove the opposite inclusion take an a ∈ A and note that (2a, 1) =
z−1 · (a, 1)−1 · z · (a, 1) ∈ G′, where z = (0,−1).

(d)-(g) easily follow from the fact that A is an open subgroup of G. �

Example 14.21. Let A be any Abelian group without non-trivial convergent se-
quences such that r2(A) = 0. Then GA = A o Z(2) is a countably compact group
with trivial center and without non-trivial convergent sequences (items (b) and (d)
of Proposition 14.20).

(i) If τ is a cardinal with c ≤ τ ≤ 2c and A is the group Z(τ) equipped with the
topology from item (ii) of Corollary 2.13, then Proposition 14.20 yields that GA is a
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hereditarily separable countably compact, locally connected group with trivial center
and without non-trivial convergent sequences .

(ii) If p > 2 is a prime, τ is a cardinal with c ≤ τ ≤ 2c and the group A = Z(p)(τ) is
equipped with the topology from item (ii) of Corollary 2.10, then Proposition 14.20
yields that GA is a hereditarily separable countably compact zero-dimensional group
with trivial center and without non-trivial convergent sequences . (Zero-dimensionality
follows from [10].)

Example 14.22. Let A be any countably compact Abelian group without non-
trivial convergent sequences such that 2A = A. According to items (c), (d) and
(e) of Proposition 14.20, the group GA = A o Z(2) satisfies GA/G

′
A
∼= Z(2), is

both hereditarily separable and countably compact, and does not have non-trivial
convergent sequences.

Observe that the derived subgroup G′
A of the group GA from our previous example

is “large” in the sense that the quotient GA/G
′
A
∼= Z(2) is very “small”, and yet GA

is still very far from being a perfect group. Indeed, the derived subgroup G′
A of GA

is Abelian, and thus GA itself is meta-Abelian.
Note that all groups of the form GA in Examples 14.21 and 14.22 have an open

Abelian subgroup A of index 2. Therefore they have no negative impact on Question
14.19, and in fact, make it appear now more natural.

Finally, we recall that MA yields a positive answer to both Questions 14.18 and
14.19 for groups of weight < c [9].

Remark 14.23. Additional applications of our results from Section 2 can be found
in the forthcoming paper [15].
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