Note on blocks of p－solvable groups with same Brauer category

熊本大学理学部 渡辺アツミ（Atumi Watanabe）
Department of Mathematics，Faculty of Science
Kumamoto University

1

Let p be a prime and let \mathcal{O} be a complete discrete valuation ring with an alge－ braically closed residue field k of characteristic p ．Let G be finite group and b be a block of G with maximal (G, b)－subpair $\left(P, e_{P}\right)$ where b is a block idempotent of $\mathcal{O} G$ ．For any subgroup Q of P ，let $\left(Q, e_{Q}\right)$ be a unique (G, b)－subpair contained in $\left(P, e_{P}\right)$ ．Following Kessar，Linckelmann and Robinson［4］，we denote by $\mathcal{F}_{\left(P, e_{P}\right)}(G, b)$ the category whose objects are subgroups of P and for $Q, R \leq P$ ，whose set of mor－ phisms from Q to R are the set of group homomorphisms $\varphi: Q \rightarrow R$ such that there exists $x \in G$ such that ${ }^{x}\left(Q, e_{Q}\right) \subseteq\left(R, e_{R}\right)$ and $\varphi(u)=x u x^{-1}$ for all $u \in Q$ ． We call $\mathcal{F}_{\left(P, e_{P}\right)}(G, b)$ the Brauer category of b ．Let $\mathbf{B}_{G}(b)$ be the Brauer category of b in the sense of Thévenaz［10］，§ 47．The categories $\mathcal{F}_{\left(P, e_{P}\right)}(G, b)$ and $\mathbf{B}_{G}(b)$ are equivalent．Let R be a normal subgroup of P such that $N_{G}(P) \subseteq N_{G}(R)$ and c be the Brauer correspondent of b in $N_{G}(R)$ ，that is，c is a unique block of $N_{G}(R)$ such that $\operatorname{Br}_{P}(c)=\operatorname{Br}_{P}(b)$ where Br_{P} is the Brauer homomorphism from $(\mathcal{O} G)^{P}$ onto $k C_{G}(P)$ ．Set $N=N_{G}(R)$ ．The notations R, c and N are fixed．Thus $b=c^{G}$ and $\left(P, e_{P}\right)$ is a maximal (N, c)－subpair．The arguments in the proof of Theorem in Kessar－Linckelmann［5］imply the following．

Theorem 1 Assume that G is p－solvable．With the above notations，suppose that $\mathcal{F}_{\left(P, e_{P}\right)}(G, b)=\mathcal{F}_{\left(P, e_{P}\right)}(N, c)$ ．Then there is an indecomposable $\mathcal{O} G b-\mathcal{O} N c$－bimodule M which satisfies the following．
（i）M and its \mathcal{O}－dual M^{*} induce a Morita equivalence between $\mathcal{O} G b$ and $\mathcal{O} N c$ ．
（ii）As an $\mathcal{O}(G \times N)$－module M has a vertex ΔP and an endo－permutation $\mathcal{O}(\Delta P)$－module as a source where $\Delta P=\{(u, u) \mid u \in P\}$ ．

Let $H_{\left(P, e_{P}\right)}^{*}(G, b)$ be the cohomology ring of b in the sense of Linckelmann［6］，［7］， that is，$H_{\left(P, e_{P}\right)}^{*}(G, b)$ is the subring of $H^{*}(P, k)$ consisting of $\zeta \in H^{*}(P, k)$ satisfying $\operatorname{res}_{Q} \zeta={ }^{g} \operatorname{res}_{Q} \zeta$ for all $Q \leq P$ and，for all $g \in N_{G}\left(Q, e_{Q}\right)$ ．We prove the following．

Theorem 2 Assume that G is p－solvable．With the above notations，if $H_{\left(P, e_{P}\right)}^{*}(G, b)=$ $H_{\left(P, e_{P}\right)}^{*}(N, c)$ ，then $\mathcal{F}_{\left(P, e_{P}\right)}(G, b)=\mathcal{F}_{\left(P, e_{P}\right)}(N, c)$ ．

2

We prove Theorem 1 using the following.
Lemma 1 (Harris-Linckelmann [3], Lemma 4.2) Assume that G is p - solvable. For any p-subgroup Q of G, we have $O_{p^{\prime}}\left(N_{G}(Q)\right)=O_{p^{\prime}}(G) \cap N_{G}(Q)=O_{p^{\prime}}(G) \cap C_{G}(Q)=$ $O_{p^{\prime}}\left(C_{G}(Q)\right)$.

Proposition 1 (Harris-Linckelmann [2], Proposition 3.1 (iii)) Let G be a p-solvable group and b be a block of G such that b covers a G-invariant block of $O_{p^{\prime}}(G)$. Then b is of principal type, that is, for any p-subgroup Q of $G, \operatorname{Br}_{Q}(b)$ is a block of $k C_{G}(Q)$.

Proposition 2 (Fong[1]; Puig[9]) Let G be a p-solvable group and b be a block of G with defect group P. Then the following holds.
(i) There is a subgroup H of G and an H-invariant block e of $O_{p^{\prime}}(H)$ such that $O_{p^{\prime}}(G) P \subseteq H$ and $\mathcal{O} G b \cong \operatorname{Ind}_{H}^{G}(\mathcal{O H e})$ as interior G-algebras.
(ii) P is a Sylow p-subgroup of H and P is a defect group of e as a block of H. Moreover let $\left(P, e_{P}^{\prime}\right)$ be a maximal (H, e)-subpair and let $e_{P}=\operatorname{Tr}_{C_{H}(P)}^{C_{G}(P)}\left(e_{P}^{\prime}\right)$. Then $\left(P, e_{P}\right)$ is a maximal (G, b)-subpair.

Note that in the above proposition $\mathcal{F}_{\left(P, e_{P}\right)}(G, b)=\mathcal{F}_{\left(P, e_{P}^{\prime}\right)}(H, e)$ since $\mathcal{O} G b \cong$ $\operatorname{Ind}_{H}^{G}(\mathcal{O H e})$ as interior G-algebras.

Proposition 3 ([5], Proposition 6) With the notations in the above proposition, let R be a subgroup of P such that $N_{G}(P) \subseteq N_{G}(R)$. Denote by c the Brauer correspondent of b in $N_{G}(R)$, and by f the Brauer correspondent of e in $N_{H}(R)$. Then f is an $N_{H}(R)$-invariant block of $O_{p^{\prime}}\left(N_{H}(R)\right)$ and $\mathcal{O} N_{G}(R) c \cong \operatorname{Ind}_{N_{H}(R)}^{N_{G}(R)}\left(\mathcal{O} N_{H}(R) f\right)$ as interior $N_{G}(R)$-algebras.

The following is shown in the proof of Theorem in [5].
Theorem 3 (Kessar-Linckelmann) Let G be a p-solvable group and b be a block of G with defect group P. Let R be a subgroup of P such that $N_{G}(P) \subseteq N_{G}(R)$ and let c be the Brauer correspondent of b in N where we set $N=N_{G}(R)$. If b covers a G-invariant block of $O_{p^{\prime}}(G)$ and if $G=O_{p^{\prime}}(G) N$, then there is an indecomposable $\mathcal{O} G b-\mathcal{O} N c$-bimodule M which satisfies the following.
(i) M and its \mathcal{O}-dual M^{*} induce a Morita equivalence between $\mathcal{O} G b$ and $\mathcal{O} N c$.
(ii) As an $\mathcal{O}(G \times N)$-module M has a vertex ΔP and an endo-permutation $\mathcal{O}(\Delta P)$ - module as a source.

Proof of Theorem 1. We prove by induction on $|G|$. Let H, e, e_{P}^{\prime} and e_{P} be as in Proposition 2, and let f be as in Proposition 3. We may assume that e_{P} 's in Theorem 1 and Proposition 2 are equal by replacing H, e, e_{P}^{\prime} and f, by H^{x}, e^{x}, $\left(e_{P}^{\prime}\right)^{x}$ and f^{x} respectively for some $x \in N_{G}(P)$ if necessary. By Proposition 2,

$$
\mathcal{F}_{\left(P, e_{P}\right)}(G, b)=\mathcal{F}_{\left(P, e_{P}^{\prime}\right)}(H, e) .
$$

By Proposition 3, $\left(P, e_{P}^{\prime}\right)$ is a maximal $\left(N_{H}(R), f\right)$-subpair and

$$
\mathcal{F}_{\left(P, e_{P}\right)}(N, c)=\mathcal{F}_{\left(P, e_{P}^{\prime}\right)}\left(N_{H}(R), f\right) .
$$

So by the assumption we have $\mathcal{F}_{\left(P, e_{P}^{\prime}\right)}(H, e)=\mathcal{F}_{\left(P, e_{P}^{\prime}\right)}\left(N_{H}(R), f\right)$. Since $\mathcal{O} G b \cong$ $\operatorname{Ind}_{H}^{G}(\mathcal{O H e})$ as interior G-algebras, the $\mathcal{O} G b-\mathcal{O} H e$-bimodule $b \mathcal{O} G e=\mathcal{O} G e$ and the $\mathcal{O} \mathrm{He}-\mathcal{O} G b$ - bimodule $e \mathcal{O} G$ induce a Morita equivalence between $\mathcal{O} G b$ and $\mathcal{O H e}$. Similarly the $\mathcal{O} N c-\mathcal{O} N_{H}(R) f$-bimodule $\mathcal{O} N f$ and the $\mathcal{O} N_{H}(R) f-\mathcal{O} N c$-bimodule $f \mathcal{O} N$ induce a Morita equivalence between $\mathcal{O} N c$ and $\mathcal{O} N_{H}(R) f$. Suppose that $H<G$. By the induction hypothesis for H and e, there is an indecomposable $\mathcal{O H e}$ $\mathcal{O} N_{H}(R) f$ - bimodule M_{0} such that M_{0} and M_{0}^{*} induce a Morita equivalence between $\mathcal{O} H e$ and $\mathcal{O} N_{H}(R) f$, and that M_{0} as an $\mathcal{O}\left(H \times N_{H}(R)\right)$-module has a vertex ΔP and an endo-permutation $\mathcal{O}(\Delta P)$-module as a source. Set $M=b \mathcal{O} G \otimes_{\mathcal{O H e}} M_{0} \otimes_{\mathcal{O N _ { H } (R) f}}$ $\mathcal{O} N c \cong M_{0}^{G \times N}$. Then M satisfies (i) and (ii) in Theorem 1. Therefore we may assume that $H=G$. Then $b=e$.

Let $Y=O_{p^{\prime}, p}(G)$. Then b is a G-invariant block of Y because $Y / O_{p^{\prime}}(G)$ is a p-group. Furthermore we have $Y=O_{p^{\prime}}(G)(Y \cap P)$. Set $Q=P \cap Y$. Then Q is a defect group of b as a block of Y. Now since G is constrained, $C_{Y}(Q)=C_{G}(Q)$. Therefore we see that $\left(Q, e_{Q}\right)$ is a maximal (Y, b)-subpair. By the Frattini argument and the assumption that $\mathcal{F}_{\left(P, e_{P}\right)}(G, b)=\mathcal{F}_{\left(P, e_{P}\right)}(N, c)$,

$$
G=N_{G}\left(Q, e_{Q}\right) Y \subseteq N_{N}(Q) C_{G}(Q) Y \subseteq N Y \subseteq N O_{p^{\prime}}(G)
$$

So we have $G=N O_{p^{\prime}}(G)$. This and Theorem 3 complete the proof.
Proof of Theorem 2. We prove by induction on $|G|$. Let H, e, e_{P}^{\prime} and e_{P} be as in Proposition 2, and let f be as in Proposition 3. We may assume that e_{P} 's in Theorem 2 and Proposition 2 are equal as in the proof of Theorem 1. Since $\mathcal{F}_{\left(P, e_{P}\right)}(G, b)=\mathcal{F}_{\left(P, e_{P}^{\prime}\right)}(H, e)$ and $\mathcal{F}_{\left(P, e_{P}\right)}(N, c)=\mathcal{F}_{\left(P, e_{P}^{\prime}\right)}\left(N_{H}(R), f\right)$ we have

$$
\begin{gathered}
H_{\left(P, e_{P}\right)}^{*}(G, b)=H_{\left(P, e_{P}^{\prime}\right)}^{*}(H, e), \\
H_{\left(P, e_{P}\right)}^{*}(N, c)=H_{\left(P, e_{P}^{\prime}\right)}^{*}\left(N_{H}(R), f\right) .
\end{gathered}
$$

From the assumption, we have $H_{\left(P, e_{P}^{\prime}\right)}^{*}(H, e)=H_{\left(P, e_{P}^{\prime}\right)}^{*}\left(N_{H}(R), f\right)$. Suppose that $H<G$. Then by the induction hypothesis, $\mathcal{F}_{\left(P, e_{P}^{\prime}\right)}(H, e)=\mathcal{F}_{\left(P, e_{P}^{\prime}\right)}\left(N_{H}(R), f\right)$, and hence $\mathcal{F}_{\left(P, e_{P}\right)}(G, b)=\mathcal{F}_{\left(P, e_{P}\right)}(N, c)$. Therefore we may assume that $H=G$. Then b covers a G-invariant block of $O_{p^{\prime}}(G)$ and P is a Sylow p-subgroup of G. Note that the element $b \in \mathcal{O} O_{p^{\prime}}(G)$.

From Proposition 1, b is of principal type. On the other hand, by Lemma 1, $\operatorname{Br}_{R}(b)$ is an N-invariant block idempotent of $k O_{p^{\prime}}(N)$ and c is a lifting of $\operatorname{Br}_{R}(b)$ to $\mathcal{O} N$. So by Proposition 1, c is also of principal type. So we may assume that b is a principal block. Therefore by a theorem of Mislin [8], we obtain $\mathcal{F}_{\left(P, e_{P}\right)}(G, b)=$ $\mathcal{F}_{\left(P, e_{P}\right)}(N, c)$. This completes the proof.

References

[1] P. Fong, On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98(1961), 263-284.
[2] M.E. Harris and Linckelmann, Splendid derived equivalences for blocks of finite p-solvable groups, J. London Math. Soc. (2) 62(2000), 85-96.
[3] M.E. Harris and Linckelmann, On the Glauberman and Watanabe correspondences for blocks of finite p-solvable groups, Trans. Amer. Math. Soc. 354(2002), 3435-3453.
[4] R. Kessar, M. Linckelmann and G.R. Robinson, Local control in fusion systems of p-blocks of finite groups, J. Algebra 257(2002), 393-413.
[5] R. Kessar and M. Linckelmann, On blocks of strongly p-solvable groups, D. Benson: Groups, Representations and Cohomology Preprint Archive.
[6] M. Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups, Algebr. Represent. Theory 2 (1999), 107-135.
[7] M. Linckelmann, Varieties in block theory, J. Algebra 215(1999), 460-480.
[8] G. Mislin, On group homomorphisms inducing mod p-cohomology isomorphism, Comment. Math. Helv. 65(1990), 454-461.
[9] L. Puig, Local block theory in p-solvable groups, Proceedings of Symp. Pure Math. 37(1980), 385-388.
[10] J. Thévenaz, " G-algebras and modular representation theory", Oxford Sci. Publ., Clarendon Press, Oxford, 1955.

