ON A THEOREM OF MISLIN ON COHOMOLOGY ISOMORPHISM AND CONTROL OF FUSION

北海道教育大学旭川校 奥山 哲郎（TETSURO OKUYAMA）
HOKKAIDO UNIVERSITY OF EDUCATION，ASAHIKAWA CAMPUS

Introduction

Let $k G$ be the group algebra of a finite group G over an algebraically closed field k of characteristic $p>0$ ．In 1990 ［9］G．Mislin proved the following remarkable theorem．

Theorem（Mislin）．Let H be a subgroup of G ．Then the restriction map in mod－p cohomology $\operatorname{res}_{H}^{G}: H^{*}(G, k) \rightarrow H^{*}(H, k)$ is an isomorphism if and only if H controls strong p－fusion in G ．
＂If＂part in the theorem has long been known to be true．For＂Only if＂part Mislin＇s proof uses deep results from algebraic topology．In 2001 ［11］V．P．Snaith gave an alternating proof of Mislin＇s theorem which uses also topological results． In［10］G．R．Robinson remarked that Mislin＇s theorem can be obtained if one could prove the non－vanishing of cohomology of certain types of trivial source $k G$－modules．

Isomorphism classes of indecomposable trivial source $k G$－modules are parametral－ ized as follows．Let P be a p－subgroup of G and S be a simple $k N_{G}(P)$－module． Let $M_{P, S}^{N_{G}(P)}$ be a projective cover of S as $k N_{G}(P) / P$－module．Inflating $M_{P, S}^{N_{G}(P)}$ to $k N_{G}(P)$ and taking its Green correspondent，we obtain an indecomposable trivial source module $M_{P, S}^{G}$ with vertex P ．And each indecomposable trivial source module is obtained in this way．

P．Symonds in［13］proved the following result from which Mislin＇s theorem is obtained following Robinson＇s remark．

Theorem（Symonds）．In the notations above，$H^{*}\left(G, M_{P, S}^{G}\right) \neq 0$ if and only if $C_{G}(P)$ acts trivially on S ．

A proof of the above theorem given by P．Symonds needs also topological methods． My aim in this talk is to give an algebraic proof of the theorem of P．Symonds．

A．Hida［8］also obtained an algebraic proof of the above Symonds＇theorem and explained his idea in his talk at this meeting．A very elegant proof ！！

In my lecture I first introduced the idea of Robinson to find an algebraic proof of Mislin＇s theorem and how his idea relates Symonds＇theorem．This is included in section 1 in this note．And then I discussed the theorem of Symonds．In the lecture I only gave an outline of my proof of the theorem．I shall give my proof in detail in this note．
"Only if"part of the theorem has been essentially proved by Benson, Carlson and Robinson in [5]. In section 2 in this note we shall give a proof of "Only if part" following arguments by them.

For "If"part we first reduce the problem to some p-local subgroup. This is done in section 3. Our p-local subgroup is a normalizer of some elementary abelian p group. Then we use the idea of Symonds in [12] to find a nonzero cohomology element. There he made use of the Lyndon-Hochschild-Serre spectral sequence and some result on the action of $\operatorname{Aut}(E)$ on the cohomology algebra $H^{*}(E, k)$, where E is an elementary abelian p-group. He needed also a result of Duflot [6] on the depth of cohomology algebras of groups with central elementary abelian groups. For these results there has been given algebraic proofs (see for example [2],[4] and [7]) and we believe that our proof of the theorem is an algebraic one.

1. Robinson's Idea

In this section let H be a subgroup of G and assume that $\operatorname{res}_{H}^{G}: H^{*}(G, k) \rightarrow$ $H^{*}(H, k)$ is an isomorphsm. We first remark the following.

Lemma 1.1. H contains a Sylow p-subgroup of G.
Proof. Consider an H-injective hull of $k_{G} ; 0 \rightarrow k_{G} \xrightarrow{f} k_{H} \uparrow^{G} \rightarrow L \rightarrow 0$. We obtain the following long exact sequence

$$
\rightarrow H^{n}(G, k) \xrightarrow{f_{*}} H^{n}\left(G, k_{H} \uparrow^{G}\right) \rightarrow H^{n}(G, L) \rightarrow H^{n+1}(G, k) \xrightarrow{f_{*}} H^{n+1}\left(G, k_{H} \uparrow^{G}\right) \rightarrow
$$

Identify $H^{n}\left(G, k_{H} \uparrow^{G}\right)$ with $H^{n}\left(H, k_{H}\right)$ by Eckmann-Shapiro. Then it follows that the map f_{*} coincides with the restriction map $\operatorname{res}_{H}^{G}$. By our assumption we have $H^{n}(G, L)$ for $n \geqq 0$. By a theorem of Benson- Carlson-Robinson (Theorem 2.4 [5]), $\hat{H}^{n}(G, L)=0$ for all n, where \hat{H}^{n} is Tate's cohomology. In particular, $\operatorname{res}_{H}^{G}$: $\hat{H}^{-1}\left(G, k_{G}\right) \rightarrow \hat{H}^{-1}\left(H, k_{H}\right)$ is an isomorphism. Any non zero element in $\hat{H}^{-1}(G, k)$ represents the almost split sequence terminating at k_{G} and it is well known that the sequence does not split as a sequence of $k H$-modules if and only if H contains a Sylow p-subgroup of G. Thus the lemma is proved.

Assume that H contains a Sylow p-subgroup of G and H does not control p-fusion. Then there exists a p-subgroup P of H such that $N_{G}(P) \supsetneqq C_{G}(P) N_{H}(P)$. Choose P maximal with this property, then $C_{G}(P)=Z(P) \times O_{p^{\prime}}\left(C_{G}(P)\right)$ and $C_{G}(P) N_{H}(P) / P$ is a strongly p-embedded subgroup of $N_{G}(P) / P$. Set $C=C_{G}(P) N_{H}(P)$. Then $k_{C} \uparrow^{N_{G}(P)}=k \oplus M$ for some $k N_{G}(P)$-module M. Each indecomposable summand of M has the form $M_{P, S}^{N_{G}(P)}$ with $C_{G}(P) \subset \operatorname{Ker} S .\left(k_{H} \uparrow^{G}\right) \downarrow_{N_{G}(P)}=k_{N_{H}(P)} \uparrow^{N_{G}(P)}$ $\oplus U=k_{C} \uparrow^{N_{G}(P)} \oplus U^{\prime}=k_{G} \oplus M \oplus U^{\prime}$ for some $k N_{G}(P)$-modules U, U^{\prime}. By a theorem of Burry-Carlson, $k_{H} \uparrow^{G}=k_{G} \oplus M_{P, S}^{G} \oplus V$ with $\operatorname{Ker} S \supset C_{G}(P)$.

Now Symonds'theorem implies that $\left.H^{(} G, M_{P, S}^{G}\right) \neq 0$ and we can conclude that $H^{*}(H, k)=H^{*}\left(G, k_{H} \uparrow^{G}\right) \supsetneqq H^{*}(G, k)$ and the "only if" part of Mislin's theorem follows.

2. Proof of "Only if" Part

Let P be a p-subgroup of G and S be a simple $k N_{G}(P)$-module. And let $M_{P, S}^{G}$ be an indecomposable $k G$-module with vertex P and with trivial source described in introduction. In these notations we shall prove the following.

Theorem 2.1. $H^{*}\left(G, M_{P, S}^{G}\right)=0$ if $C_{G}(P)$ acts nontrivially on S.
We argue following a proof of Proposition 5.3 in [5]. If $C_{G}(P)$ acts nontrivially on S, then there exists a p^{\prime}-elemnt $y \neq 1$ in $C_{G}(P)$ such that y acts nontrivially on S. Thus there exists a one dimensional submodule M_{0} of $S \downarrow_{\langle y\rangle \times P}$ on which y acts nontrivially. Then $M_{0} \uparrow^{N_{G}(P)}$ has a summand isomorphic to $M_{P, S}^{N_{G}(P)}$ because $M_{0} \uparrow^{N_{G}(P)}$ is a projective $k N_{G}(P) / P$-module and $\operatorname{Hom}_{k N_{G}(P)}\left(M_{0} \uparrow^{N_{G}(P)}, S\right) \cong$ $\operatorname{Hom}_{k\langle y\rangle \times P}\left(M_{0}, S \downarrow_{\langle y\rangle \times P}\right) \neq 0$. Therefore $M=M_{P, S}^{G}$ appears in summand of $M_{0} \uparrow^{G}$ and $H^{*}(G, M) \leq H^{*}\left(G, M_{0} \uparrow^{G}\right)$. Now the result follows by Lemma 5.1 in [5].

3. Proof of "If" Part

Let H be a subgroup of G and P be a p-subgroup of H. Then the module $M_{P, k}^{H}$ where $k=k_{N_{H}(P)}$ is the trivial $k N_{H}(P)$-module is called a Scott module of H with vertex P and we shall denote it by $S c_{P}^{H}$. It is well known that $S c_{P}^{H}$ is a unique trivial source module of H with vertex P which contains k_{H}.

Throughout this section let $M=M_{P, S}^{G}$ where P is a p-subgroup of G and S is a simple $k N_{G}(P)$-module on which $C_{G}(P)$ acts trivially. Notice that the condition that $C_{G}(P)$ acts trivially on S is equivalent to the condition that $M \downarrow_{P C_{G}(P)}$ has a direct summand isomorphic to $S c_{P}^{P C_{G}(P)}$. In this section we shall give a proof of "if" part of the theorem by induction on $|P|$. We divide our proof in several steps.

Lemma 3.1. Let Q be a subgroup of P such that $C_{P^{x}}(Q) \subseteq Q$ for any $x \in G$ with $P^{x} \supseteq Q$. Then $M \downarrow_{N_{P}(Q) C_{G}(Q)}$ has a direct summand isomorphic to $S c_{N_{P}(Q)}^{N_{P}(Q) C_{G}(Q)}$.
Proof. We shall prove the lemma by induction on $[P: Q]$. If $Q=P$, then the result clearly holds. Assume that $Q \neq P$ and set $R=N_{P}(Q)$. Then $R \supsetneq Q$. If $P^{x} \supseteq R$ for an element $x \in G$, then $C_{P^{x}}(R) \subseteq C_{P^{x}}(Q) \subseteq Q \subset R$. So R satisfies the assumption in the lemma. By induction $M \downarrow_{N_{P}(R) C_{G}(R)}$ has a direct summand isomorphic to $S c_{N_{P}(R)}^{N_{P}(R) C_{G}(R)}$. As $N_{P}(R) \cap R C_{G}(R)=R C_{P}(R)=R, S c_{R}^{R C_{G}(R)}$ is a summand of $\left(S c_{N_{P}(R)}^{N_{P}(R) C_{G}(R)}\right) \downarrow_{R C_{G}(R)}$. Thus $M \downarrow_{R C_{G}(R)}$ has a summand isomorphic to $S c_{R}^{R C_{G}(R)}$ and there exists an indecomposable direct summand M_{1} of $M \downarrow_{R C_{G}(Q)}$ such that $M_{1} \downarrow_{R C_{G}(R)}$ has a summand isomorphic to $S c_{R}^{R C_{G}(R)}$. We shall show that M_{1} is isomorphic to $S c_{R}^{R C_{G}(Q)}$. A vertex of M_{1} contains R. On the otherhand M_{1} is $P^{x} \cap R C_{G}(Q)$-projective for some $x \in G$. Hence $P^{x a} \cap R C_{G}(Q) \supseteq R$ for some $a \in R C_{G}(Q) . \quad P^{x a} \cap R C_{G}(Q)=R C_{P^{x a}}(Q)=R$ and therefore a vertex of M_{1} is R. Set $H=R C_{G}(Q) \cap N_{G}(R) . \quad H=R\left(N_{G}(R) \cap C_{G}(Q)\right)$. We shall claim that $N_{G}(R) \cap C_{G}(Q) / C_{G}(R)$ is a p-group. Let $y \in N_{G}(R) \cap C_{G}(Q)$ be a p^{\prime}-element. Then $\langle y\rangle \times Q$ acts on R by conjugation and $\langle y\rangle$ centralizes $C_{R}(Q)$ as $C_{R}(Q) \subseteq Q$.

By Thompson's $A \times B$ Lemma (24.2 in [3]), y centralizes R and our claim follows. Now let M_{0} be the Green correspondent of M_{1} with respect to $\left(R, R C_{G}(Q), H\right)$. As $M_{1} \downarrow_{R C_{G}(R)}$ has a summand isomorphic to $S c_{R}^{R C_{G}(R)}$, so has $M_{0} \downarrow_{R C_{G}(R)}$. As M_{0} is R-projective and $H / R C_{G}(R)$ is a p-group, M_{0} itself is a Scott module $S c_{R}^{H}$ and therefore M_{1} is a Scott module $S c_{R}^{R C_{G}(Q)}$.

Let E_{1} be an elementary abelian subgroup of P of maximal rank. Among the conjugates E_{1}^{x} of E_{1} with $E_{1}^{x} \subseteq P$, choose E_{0} so that $\left|C_{P}\left(E_{0}\right)\right|$ is maximal. Set $Q_{0}=C_{P}\left(E_{0}\right)$. Let $P^{a} \supseteq Q_{0}$ be a conjugate of P such that $\left|N_{P^{a}}\left(Q_{0}\right)\right|$ is maximal. Now set $Q=Q_{0}^{a^{-1}}$ and $E=E_{0}^{a^{-1}}$. Then $E \subseteq P$ and $Q=C_{P}(E)$. In these notations we have the following.

Lemma 3.2. The following statements hold.

1. $E=\Omega_{1}(Q)$, that is, each element in Q of order p is contained in E.
2. Q satisfies the assumption in Lemma 2.1.
3. $N_{P}(Q)=N_{P}(E)$. And if $P^{x} \supseteq Q$, then $\left|N_{P^{x}}(E)\right| \leq\left|N_{P}(Q)\right|$.

Proof. As E is conjugate to E_{1}, E is also of maximal rank in P. Hence the statement (1) follows. By our choice of $E,\left|C_{P}(E)\right|=\left|C_{P}\left(E_{0}\right)\right|$. So $\left|C_{P}(E)\right|$ is also maximal. If $P^{x} \supseteq Q$ for $x \in G$, then $P \supseteq Q^{x^{-1}}$ and $C_{P}\left(E^{x^{-1}}\right) \supseteq Q^{x^{-1}}$. By maximality of $\left|C_{P}(E)\right|, C_{P}\left(E^{x^{-1}}\right)=Q^{x^{-1}}$ and therefore $C_{P^{x}}(E)=Q$. Thus $C_{P^{x}}(Q) \subseteq C_{P^{x}}(E)=$ Q. Thus the statement (2) follows. $N_{P}(E)$ normalizes $C_{P}(E)=Q$ and therefore $N_{P}(E) \subseteq N_{P}(Q)$. By (1) E is a characteristic subgroup of Q and $N_{P}(Q) \subseteq N_{P}(E)$. If $P^{x} \supseteq Q$ for an element $x \in G$, then as in the above it follows that $C_{P^{x}}(E)=Q$ and $N_{P^{x}}(Q)=N_{P x}(E)$. Now by maximality of $\left|N_{P}(Q)\right|$, we have that $\left|N_{P}(Q)\right| \geq$ $\left|N_{P^{x}}(Q)\right|=\left|N_{P^{x}}(E)\right|$ and the statement (3) follows.

For $E \subseteq P$ and $Q=C_{P}(E)$ chosen as in the above, $N_{G}(Q) \subseteq N_{G}(E)$ by Lemma 2.2.(1). And by Lemma 2.1 and Lemma 2.2.(2) there exists an indecomposable direct summand M_{1} of $M \downarrow_{N_{G}(E)}$ such that $M_{1} \downarrow_{N_{P}(Q) C_{G}(Q)}$ has a direct summand isomorphic to $S c_{N_{P}(Q)}^{N_{P}(Q) C_{G}(Q)}$.

In the rest of this section, $E \subseteq P, Q=C_{P}(E)$ and the $k N_{G}(E)$-module M_{1} will be those satifying the above conditions. We have the following.

Lemma 3.3. A vertex of M_{1} is $N_{P}(Q) . M_{1} \downarrow_{C_{G}(E)}$ is $\left\{Q^{x} ; x \in N_{G}(E)\right\}$-projective and has a direct summand isomorphic to $M_{Q, T}^{C_{G}(E)}$, for some simple $k N_{C_{G}(E)}(Q)$ module T on which $C_{G}(Q)$ acts trivially.

Proof. A vertex of M_{1} contains $N_{P}(Q)$. On the otherhand M_{1} is $P^{x} \cap N_{G}(E)$ projective for some $x \in G$. So $P^{x a} \cap N_{G}(E) \supseteq N_{P}(Q)$ for some $a \in N_{G}(E)$. Then by Lemma 2.2.(3) $P^{x a} \cap N_{G}(E)=N_{P x a}(E)=N_{P}(Q)$ and it follows that a vertex of M_{1} is $N_{P}(Q)$. For $x \in N_{G}(E), N_{P}(Q)^{x} \cap C_{G}(E)=C_{P}(E)^{x}=Q^{x}$. Hence $M_{1} \downarrow_{C_{G}(E)}$ is $\left\{Q^{x} ; x \in N_{G}(E)\right\}$-projective. As $M_{1} \downarrow_{N_{P}(Q) C_{G}(Q)}$ has a direct summand isomorphic to $S c_{N_{P}(Q)}^{N_{P}(Q) C_{G}(Q)}$, there exists an indecomposable direct summand M_{0} of $M_{1} \downarrow_{C_{G}(E)}$ such that $M_{0} \downarrow_{Q C_{G}(Q)}$ has an indecomposable direct summand isomorphic to $S c_{Q}^{Q C_{G}(Q)}$.

Such an indecomposable trivial source $k C_{G}(E)$-module with vertex Q is isomorphic to the module described in the lemma.

In proofs of the following two lemmas we shall use the idea of Symonds in [12].
Lemma 3.4. Assume that $G=C_{G}(E)$. Then $H^{*}(G, M) \neq 0$
Proof. $C_{G}(P \bmod E) / C_{G}(P)$ is a p-group as E is central in G. So as a $k G / E$-module, M satisfies the assumption in the theorem for G / E. By induction we may assume that $H^{*}(G / E, M) \neq 0$. We examine the Lyndon-Hochschild-Serre spectral sequence ;

$$
E_{2}^{p, q}=H^{p}\left(G / E, H^{q}(E, M)\right) \Rightarrow H^{p+q}(G, M)
$$

Let n be the lowest degree with $H^{n}(G / E, M) \neq 0$. As E is central in G, for each q, a $k G / E$-module $H^{q}(E, M)$ is isomorphic to a direct sum of some copies of M (or 0). Hence $H^{m}\left(G / E, H^{q}(E, M)\right)=0$ for $m<n$. Thus $E_{\infty}^{n, 0} \neq 0$ and $H^{n}(G, M) \neq 0$.

By Lemma 2.3 and Lemma $2.4 H^{*}\left(C_{G}(E), M\right) \neq 0$. Using this fact we shall examine $H^{*}\left(N_{G}(E), M\right)$ in the following two lemmas.

Let r be the rank of E. Set $E=\left\langle a_{1}, \cdots, a_{r}\right\rangle$ and $\alpha_{i} \in H^{1}(E, k)=\operatorname{Hom}(E, k)$ be the element dual to a_{i}. Then letting $\beta_{i}=\beta\left(\alpha_{i}\right)$ we have the polynomial subalgebra $k\left[\beta_{1}, \cdots, \beta_{r}\right]$ in $H^{*}(E, k)$, where β is the Bockstein map. Using Evens' norm map, we obtain homogeneous elements $\zeta_{1}, \cdots, \zeta_{r} \in H^{*}\left(C_{G}(E), k\right)$ such that $\operatorname{res}_{E}^{C_{G}(E)}\left(\zeta_{i}\right)=$ $\beta_{i}{ }^{p^{a}}$ where p^{a} is the p-part of $\left|C_{G}(E): E\right|$. Set $R=k\left[\zeta_{1}, \cdots, \zeta_{r}\right] \subseteq H^{*}\left(C_{G}(E), k\right)$ and $R_{0}=\operatorname{res}_{E}^{C_{G}(E)}(R)$. The elements ζ_{i} can be constructed in the prime field \mathbb{F}_{p}. We however do not know whether R can be taken $N_{G}(E)$-invariant although R_{0} is $N_{G}(E)$-invariant. We remark the following fact.

For $x \in N_{G}(E)$, write $\beta_{i}^{x}=\sum_{j=1}^{r} \lambda_{i j} \beta_{j}$, where $\lambda_{i j} \in \mathbb{F}_{p}$. Then by our choice of ζ_{i}, we have that $\operatorname{res}_{E}^{C_{G}(E)}\left(\zeta_{i}^{x}-\sum_{j=1}^{r} \lambda_{i j} \zeta_{j}\right)=0$. So $\operatorname{res}_{Q^{y}}^{C_{G}}(E)\left(\zeta_{i}^{x}-\sum_{j=1}^{r} \lambda_{i j} \zeta_{j}\right)$ is nilpotent for each $N_{G}(E)$-congugate Q^{y} because $\Omega_{1}(Q)=E$. So replacing ζ_{i} 's by its suitable p powers, we can assume that $\operatorname{res}_{Q^{y}}^{C_{G}(E)}\left(\zeta_{i}^{x}-\sum_{j=1}^{r} \lambda_{i j} \zeta_{j}\right)=0$ for any Q^{y}. The $k N_{G}(E)$ module M_{1} defined in Lemma 2.3 is $\left\{Q^{y} ; y \in N_{G}(E)\right\}$-projective as $k C_{G}(E)$-module. Therefore for any element $\gamma \in H^{*}\left(C_{G}(E), M_{1}\right)$, we have $\gamma \cdot \zeta_{i}^{x}=\gamma \cdot\left(\sum_{j=1}^{r} \lambda_{i j} \zeta_{j}\right)$. Thus when we consider multiplications of the elements in R on $H^{*}\left(C_{G}(E), M_{1}\right)$, we may assume that R has an $N_{G}(E)$-action which coincides with that on R_{0}.
Lemma 3.5. Assume that $G=N_{G}(E)$. Then $\operatorname{res}_{C_{G}(E)}^{G} \operatorname{tr}_{C_{G}(E)}^{G}\left(H^{*}\left(C_{G}(E), M\right)\right) \neq 0$.
Proof. By a result of Evens (Theorem 10.3.5 [7], see also [6] and [1]), $H^{*}\left(C_{G}(E), M\right)$ is free over the polynomial algebra R defined in the above. Let n be the lowest degree with $H^{n}\left(C_{G}(E), M\right) \neq 0$. By minimality of $n, H^{n}\left(C_{G}(E), M\right) \cap H^{*}\left(C_{G}(E), M\right) I=0$, where I is the ideal in R of elements of positive degree. So a k-basis of $H^{n}\left(C_{G}(E), M\right)$ can be extended to a free R-basis of $H^{*}\left(C_{G}(E), M\right)$ and we can conclude that $H^{n}\left(C_{G}(E), M\right) \cdot R \cong H^{n}\left(C_{G}(E), M\right) \otimes_{k} R$. As is remarked in [12], R_{0} contains a free submodule F_{0} as $G / C_{G}(E)$-module. Set $F=R \cap\left(\operatorname{res}_{E}^{C_{G}(E)}\right)^{-1}\left(F_{0}\right)$. Then by the above remark it follows that that $H^{n}\left(C_{G}(E), M\right) \cdot F \cong H^{n}\left(C_{G}(E), M\right) \otimes_{k} F$ is G invariant and $H^{n}\left(C_{G}(E), M\right) \cdot F \cong H^{n}\left(C_{G}(E), M\right) \otimes_{k} F_{0}$ as $G / C_{G}(E)$-modules. Thus
$H^{*}\left(C_{G}(E), M\right)$ also contains a free $G / C_{G}(E)$-module. So there exists an element $\gamma \in H^{*}\left(C_{G}(E), M\right)$ such that $0 \neq \sum_{x \in G / C_{G}(E)} \gamma^{x}=\operatorname{res}_{C_{G}(E)}^{G} \operatorname{tr}_{C_{G}(E)}^{G}(\gamma)$.

For a subgroup $A \subset C_{G}(E)$ with $A \nsupseteq E$, take a maximal subgroup E_{1} of E such that $E_{1} \supseteq A \cap E$. Using the isomorphism $A E / A \cong E / A \cap E$ and the epimorphism $E / A \cap E \rightarrow E / E_{1}$, we have an element $\eta(A) \in \operatorname{Inf}\left(H^{2}(A E / A, k)\right) \subset H^{2}(A E, k)$ such that $\operatorname{res}_{E}^{A E}(\eta(A)) \in H^{2}(E, k)$ is not nilpotent and $\operatorname{res}_{A}^{A E}(\eta(A))=0$. Using Evens' norm map, set $\tau(A)=\operatorname{norm}_{A E}^{C_{G}(E)}(\eta(A)) \in H^{*}\left(C_{G}(E), k\right)$. By Mackey formula $\tau(A)$ also satisfies the above conditions for $\eta(A)$. And set $\rho(A)=\prod_{x \in N_{G}(E) / C_{G}(E)} \tau(A)^{x} \in$ $H^{*}\left(C_{G}(E), k\right)$. Finally set $\rho=\prod_{A} \rho(A) \in H^{*}\left(C_{G}(E), k\right)$, where the product is taken over the set of subgroups A of $C_{G}(E)$ with $A \nsupseteq E . \rho$ is $N_{G}(E)$-invariant. It holds that $\operatorname{res}_{A}^{C_{G}(E)}(\rho)=0$ for any subgroup $A \subset C_{G}(E)$ with $A \nsupseteq E$ and $\operatorname{res}_{E}^{C_{G}(E)}(\rho) \in H^{*}(E, k)$ is not nilpotent. Notice that ρ is regular on $H^{*}\left(C_{G}(E), M_{1}\right)$ where M_{1} is the $k N_{G}(E)$-module in Lemma 2.3 because E is central in $C_{G}(E)$ and M_{1} is a trivial source module with kernel containing E.
Lemma 3.6. Assume that $G=N_{G}(E)$. Then there exists an element $\alpha \in H^{*}(G, M)$ such that $\operatorname{res}_{Q}^{G}(\alpha) \neq 0$ and $\operatorname{res}_{A}^{G}(\alpha)=0$ for any subgroup $A \subset G$ with $A \nsupseteq E$.

Proof. Set $C=C_{G}(E)$. By Lemma 2.5 there exists $\gamma \in H^{*}(C, M)$ such that $0 \neq$ $\operatorname{res}_{C}^{G} \operatorname{tr}_{C}^{G}(\gamma)$. Set $\alpha=\operatorname{tr}_{C}^{G}(\gamma \cdot \rho) \in H^{*}(G, M)$. We shall show that α satisfies the assumptions in the lemma.

For a subgroup A of $G, \operatorname{res}_{A}^{G}(\alpha)=\operatorname{res}_{A}^{G} \operatorname{tr}_{C}^{G}(\gamma \cdot \rho)=\sum_{x \in C \backslash G / A} \operatorname{tr}_{C \cap A}^{A} \operatorname{res}_{C \cap A}^{C}((\gamma$. $\left.\rho)^{x}\right)$. As ρ is G-invariant, $\operatorname{res}_{C \cap A}^{C}\left((\gamma \cdot \rho)^{x}\right)=\operatorname{res}_{C \cap A}^{C}\left(\gamma^{x}\right) \operatorname{res}_{C \cap A}^{C}(\rho)$. If $A \nsupseteq E$, then $C \cap A \nsupseteq E$ and therefore $\operatorname{res}_{A}^{G}(\alpha)=0$. Again by the fact that ρ is G-invariant $\operatorname{res}_{C}^{G}(\alpha)=\operatorname{res}_{C}^{G} \operatorname{tr}_{C}^{G}(\gamma \cdot \rho)=\left(\operatorname{res}_{C}^{G} \operatorname{tr}_{C}^{G}(\gamma)\right) \cdot \rho \neq 0$ because ρ is regular on $H^{*}(C, M)$. If $\operatorname{res}_{Q}^{G}(\alpha)=0$, then $\operatorname{res}_{Q^{x}}^{G}(\alpha)=0$ for all $x \in G$. Then as $M \downarrow_{C}$ is $\left\{Q^{x} ; x \in G\right\}$ projective, it follows that $\operatorname{res}_{C}^{G}(\alpha) \neq 0$ which is not the case.

Now we can complete a proof for "If"part of the theorem of Symonds.
Theorem 3.7. If $C_{G}(P)$ acts trivially on S, then $H^{*}\left(G, M_{P, S}^{G}\right) \neq 0$.
Proof. Let M_{1} be the $k N_{G}(E)$-module in Lemma 2.3. Then by Lemma 2.6, there exists an element $\alpha \in H^{*}\left(N_{G}(E), M_{1}\right)$ such that $\operatorname{res}_{Q}^{N_{G}(E)}(\alpha) \neq 0$ and $\operatorname{res}_{A}^{N_{G}(E)}(\alpha)=0$ for any subgroup $A \subset N_{G}(E)$ with $A \nsupseteq E$. As M_{1} is a direct summand of $M \downarrow_{N_{G}(E)}$, we can regard $\alpha \in H^{*}\left(N_{G}(E), M\right)$ for which the same conditions as in the above hold. We shall show that $\operatorname{res}_{Q}^{G} \operatorname{tr}_{N_{G}(E)}^{G}(\alpha) \neq 0$. For an element $x \in G$, if $N_{G}(E) \cap Q^{x} \supseteq E$, then $E^{x}=E$ as $\Omega_{1}(Q)=E$ and hence $x \in N_{G}(E)$. Thus for $x \notin N_{G}(E)$, we have that $\operatorname{res}_{N_{G}(E)^{x} \cap Q}^{N_{G}(E)^{x}}\left(\alpha^{x}\right)=\left(\operatorname{res}_{N_{G}(E) \cap Q^{x}}^{N_{G}(E)}(\alpha)\right)^{x}=0$. Now Mackey formula says that $\operatorname{res}_{Q}^{G} \operatorname{tr}_{N_{G}(E)}^{G}(\alpha)=\operatorname{res}_{Q}^{N_{G}(E)}(\alpha) \neq 0$.

References

[1] A.Adem and R.J.Milgram, The mod 2 cohomology rings of rank 3 simple groups are CohenMacaulay, Ann. of Math. Stud., 138, 2-13, 1996
［2］J．L．Alperin，Local Representatiom Theory ，Cambridge Studies in Advanced Mathematics， 11，Cambridge University Press， 1986
［3］M．Aschbacher，Finite Group Theory，（second edition），Cambridge Studies in Advanced Math－ ematics，10，Cambridge University Press， 2000
［4］D．J．Benson，Representations and Cohomology II，Cambridge Studies in Advanced Mathemat－ ics，31，Cambridge University Press， 1991
［5］D．J．Benson，J．F．Carlson and G．R．Robinson，On the vanishing of group cohomology，J．Algebra， 131，40－73， 1990
［6］J．Duflot，Depth and equivariant cohomology，Comment．Math．Helvetici，56，627－637， 1981
［7］L．Evens，The Cohomology of Groups，Oxford Mathematical Monographs，Clarendon Press， 1991
［8］A．Hida，Control of fusion and cohomology of finite groups，RIMS 講究録「有限群のコホモロ ジー論とその周辺」本号
［9］G．Mislin，On group homomorphisms inducing mod－p cohomology isomorphisms，Comment． Math．Helvetici，65，454－461， 1990
［10］G．R．Robinson，Arithmetical properties of blocks，in Algebraic Groups and their Representa－ tions（Carter R．W and Saxl J．eds．），213－232，Kluwer， 1998
［11］V．P．Snaith，On a theorem of Mislin，Bull．London Math．Soc．，33，275－278， 2001
［12］P．Symonds，The action of automorphisms on the cohomology of a p－group，Math．Proc．Camb． Phil．Soc．，127，495－496， 1999
［13］P．Symonds，Mackey functors and control of fusion，preprint，Dec． 2002

