Calculations for Broué’s abelian defect group conjecture
ブルーの可換不足群予想の計算

千葉大学 理学部 越谷 重夫 (Shigeo Koshitani)
Department of Mathematics and Informatics,
Faculty of Science, Chiba University
e-mail koshitan@math.s.chiba-u.ac.jp

This is a joint work with Naoko Kunugi and Katsushi Waki, and a detailed version of a result presented here is in [6].

It has been conjectured by Michel Broué that a block algebra of a finite group should be derived (Rickard) equivalent to a block algebra of the normalizer of a common defect group which correspond each other via the Brauer correspondence provided the defect group is abelian, see [2, 6.2.Question]. This is known as Broué’s Abelian Defect Group Conjecture, (ADGC) for short. We have been continuing a project on Broué’s ADGC for a specific defect group, say the elementary abelian group of order nine, see [3], [4], [5]. Our main result here is the following:

Theorem (Koshitani-Kunugi-Waki, 2005). Let \(G \) be the Janko simple group \(J_4 \), and let \((O, K, k)\) be a splitting 3-modular system for all subgroups of \(G \), namely, \(O \) is a complete discrete valuation ring of rank one such that \(K \) is the quotient field of \(O \) with \(\text{char}(K) = 0 \) and such that \(k \) is the residue field of \(O \), namely \(k = O/\text{rad}(O) \), with \(\text{char}(k) = 3 \), and \(K \) and \(k \) are both splitting fields for all subgroups of \(G \). Let \(A \) be a unique block algebra of \(OG \) whose defect group \(P \) is elementary abelian of order 9, and let \(B \) be the Brauer correspondent of \(A \) in \(OH \) where \(H = N_G(P) \). Then, \(A \) and \(B \) are derived (Rickard) equivalent. In fact, even stronger fact is proved, namely, \(A \) and \(B \) are splendidly derived (Rickard) equivalent, see [9] and [10].
Remark. In our proof results in papers of Okuyama [7] and [8] are important.

Corollary. It turns out that Broué’s ADGC holds for any prime p and any block algebra of G. This means that Broué’s ADGC is settled for all primes and all block algebras of J_4.

Proof. This follows immediately from Theorem and [1, Lemma 5.1].

Acknowledgment. The author is grateful to Professor Hiroki Sasaki for the nice meeting held in Kyoto, October 29 – September 2, 2005.

References