Calculations for Broué＇s abelian defect group conjecture ブルエの可換不足群予想の計算

千葉大学 理学部 越谷 重夫（Shigeo Koshitani）
Department of Mathematics and Informatics， Faculty of Science，Chiba University e－mail koshitan＠math．s．chiba－u．ac．jp

This is a joint work with Naoko Kunugi and Katsushi Waki，and a detailed version of a result presented here is in［6］．

It has been conjectured by Michel Broué that a block algebra of a fi－ nite group should be derived（Rickard）equivalent to a block algebra of the normalizer of a common defect group which correspond each other via the Brauer correspondence provided the defect group is abelian， see［2，6．2．Question］．This is known as Broué＇s Abelian Defect Group Conjecture，（ADGC）for short．We have been continuing a project on Broués ADGC for a specific defect group，say the elementary abelian group of order nine，see［3］，［4］，［5］．Our main result here is the follow－ ing：

Theorem（Koshitani－Kunugi－Waki，2005）．Let G be the Janko simple group J_{4} ，and let $(\mathcal{O}, \mathcal{K}, k)$ be a splitting 3 －modular system for all sub－ groups of G ，namely， \mathcal{O} is a complete discrete valuation ring of rank one such that \mathcal{K} is the quotient field of \mathcal{O} with $\operatorname{char}(\mathcal{K})=0$ and such that k is the residue field of \mathcal{O} ，namely $k=\mathcal{O} / \operatorname{rad}(\mathcal{O})$ ，with $\operatorname{char}(k)=3$ ， and \mathcal{K} and k are both splitting fields for all subgroups of G ．Let A be a unique block algebra of $\mathcal{O} G$ whose defect group P is elementary abelian of order 9，and let B be the Brauer correspondent of A in $\mathcal{O H}$ where $H=N_{G}(P)$ ．Then，A and B are derived（Rickard）equivalent．In fact， even stronger fact is proved，namely，A and B are splendidly derived （Rickard）equivalent，see［9］and［10］．

Remark. In our proof results in papers of Okuyama [7] and [8] are important.

Corollary. It turns out that Broué's ADGC holds for any prime p and any block algebra of G. This means that Broué's $A D G C$ is settled for all primes and all block algebras of J_{4}.

Proof. This follows immediately from Theorem and [1, Lemma 5.1].
Acknowledgment. The author is grateful to Professor Hiroki Sasaki for the nice meeting held in Kyoto, October 29 - September 2, 2005.

References

[1] J. An, E.A. O'Brien, R.A. Wilson, The Alperin's weight conjecture and Dade's conjecture for the simple group J_{4}, LMS J. Comput. Math. 6 (2003), 119-140.
[2] M. Broué, Isométries de caractères et équivalences de Morita ou dérivées, Publ. Math. IHES 71 (1990), 45-63.
[3] S. Koshitani, N. Kunugi, Broué's conjecture holds for principal 3-blocks with elementary abelian defect group of order 9, J. Algebra 248 (2002), 575-604.
[4] S. Koshitani, N. Kunugi, K. Waki, Broué's conjecture for non-principal 3blocks of finite groups, J. Pure Appl. Algebra 173 (2002), 177-211.
[5] S. Koshitani, N. Kunugi, K. Waki, Broué's abelian defect group conjecture for the Held group and the sporadic Suzuki group, J. Algebra 279 (2004), 638-666.
[6] S. Koshitani, N. Kunugi, K. Waki, Broué's abelian defect group conjecture holds for the Janko simple group $J_{4}, 2005$, in preparation.
[7] T. Okuyama, Some examples of derived equivalent blocks of finite groups, preprint (1997).
[8] T. Okuyama, Remarks on splendid tilting complexes, in: Representation theory of finite groups and related topics, edited by S. Koshitani, RIMS Kokyuroku 1149, Proc. Research Institute for Mathematical Sciences, Kyoto University, 2000, 53-59.
[9] J. Rickard, Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc. (3) 72 (1996), 331-358.
[10] J. Rickard, Equivalences of derived categories for symmetric algebras, J. Algebra 257 (2002), 460-481.

