Type transformations for sharp characters

Masao KIYOTA
College of Liberal Arts and Sciences
Tokyo Medical and Dental University

1 Introduction

Let G be a finite group and χ be a faithful character of G of degree n. Put $L=\{\chi(g) \mid g \in G, g \neq 1\}$. Then we have the following

Theorem 1 (Blichfeldt $[\mathrm{B}]) \quad|G|$ divides the integer $\prod_{l \in L}(n-l)$.
Theorem 1 gives us the upper bound of the order of G. We are interested in the case G attains the bound.

Definition $1 \quad$ We call (G, χ) sharp of type L (or L-sharp) if $|G|=\prod_{l \in L}(n-l)$ holds.

Problem 1 For a given L, determine all L-sharp pairs (G, χ).

Example 1 Let G be a sharply t-transitive permutation group, which is different from S_{t}, the symmetric group of degree t. Let π be the permutation character of G. Then (G, π) is sharp of type $\{0,1, \cdots, t-1\}$.

Note that (G, χ) is sharp if and only if $\left(G, \chi+1_{G}\right)$ is sharp, where 1_{G} is the trivial character of G. So we may assume $\left(\chi, 1_{G}\right)=0$ holds, when we consider sharp characters χ. We call such character normalized sharp character.

We have the following results concerning Problem 1. When L contains an irrational number, L-sharp pairs (G, χ) are completely classified by Alvis-Nozawa[A-N]. Hence we may assume that $L \subset \mathbf{Z}$ holds. The cases $L=$ $\{l\},\{l, l+1\},\{l, l+2\},\{l, l+1, l+2\},\{l, l+1, l+2, l+3\}$ are treated in Cameron-Kiyota [C-K], Cameron-Kataoka-Kiyota [C-K-K], Nozawa [N]. We do not have any classification results for "big" L in case $L \subset \mathbf{Z}$, and so we should ask the following

Problem 2 Can we reduce the classification of L-sharp pairs to that of L^{\prime} sharp pairs for some L^{\prime} with $\left|L^{\prime}\right|<|L|$?

2 Transformations of types

Let L_{1}, L_{2} be finite sets of complex numbers with $\left|L_{1}\right|=\left|L_{2}\right|=m \geq 2$.
Definition 2 We write $L_{1} \sim L_{2}$ if $e_{1}\left(L_{1}\right)=e_{1}\left(L_{2}\right), e_{2}\left(L_{1}\right)=e_{2}\left(L_{2}\right), \cdots, e_{m-1}\left(L_{1}\right)=$ $e_{m-1}\left(L_{2}\right)$ hold, where $e_{k}\left(L_{1}\right)$ is the k-th elementary symmetric function with variables in L_{1}. For example, $e_{1}\left(L_{1}\right)=\sum_{l \in L_{1}} l, e_{m}\left(L_{1}\right)=\prod_{l \in L_{1}} l$.

Example $2 \quad\{a, b\} \sim\{c, d\} \Longleftrightarrow a+b=c+d$,

$$
\{a, b, c\} \sim\{d, e, f\} \Longleftrightarrow a+b+c=d+e+f, a b+b c+c a=d e+e f+f d
$$

The following two lemmas are fundamental but easy to prove.

Lemma 1

(1) $L_{1} \sim L_{2} \Longleftrightarrow L_{1}+l \sim L_{2}+l$, where we denote $L_{1}+l=\left\{a+l \mid a \in L_{1}\right\}$.
(2) If $L_{1} \sim L_{2}$, then we have

$$
L_{1}=L_{2} \Longleftrightarrow L_{1} \cap L_{2} \neq \emptyset \Longleftrightarrow e_{m}\left(L_{1}\right)=e_{m}\left(L_{2}\right)
$$

Lemma 2 Assume $L \subset \mathbf{C},|L|=r m(m \geq 2)$. Then the followings are equivalent.
(1) There exists a monic polynomial $f(X) \in \mathbf{C}[X]$ of degree m with $|f(L)|=r$.
(2) There exists a decomposition of $L, L=L_{1} \cup \cdots \cup L_{r}$ with $\left|L_{k}\right|=m, L_{1} \sim$ $\cdots \sim L_{r}$.

Using the above lemmas, we can prove the following Theorem.
Theorem 2 Let χ be a faithful character of a finite group G. Set $L=$ $\{\chi(g) \mid g \in G, g \neq 1\}$. Suppose that there exists a decomposition of $L, L=$ $L_{1} \cup \cdots \cup L_{r}$ with $\left|L_{k}\right|=m \geq 2, L_{1} \sim \cdots \sim L_{r}$. Assume further that each L_{k} is algebraically closed. Then there exists a monic $f(X) \in \mathbf{Z}[X]$ which satisfies the following two conditions.
(i) $\quad(G, \chi)$ is sharp of type $L \quad \Longleftrightarrow \quad(G, f(\chi))$ is sharp of type $f(L)$.

$$
\begin{equation*}
f(L)=\left\{(-1)^{m-1} e_{m}\left(L_{1}\right), \cdots,(-1)^{m-1} e_{m}\left(L_{r}\right)\right\} \tag{ii}
\end{equation*}
$$

We will give some examples that shows how to apply Theorem 2.

Example 3 Let (G, χ) be normalized sharp of type $L=\{-1,0,1,2\}$. Note that $L=\{-1,2\} \cup\{0,1\},\{-1,2\} \sim\{0,1\}$. So L satisfies the conditions of Theorem 2. If we put $f(X)=X^{2}-X$, then $(G, f(\chi))$ is sharp of type $\{2,0\}$ (but not necessarily normalized). Using the classification of sharp of type $\{l, l+2\}$, we get $G=S_{5}, A_{6}, M_{11}$, Thus, G is a sharply 4-transitive group except S_{4}.

Example $4 \quad L=\{-1,0,2,3\}=\{-1,3\} \cup\{0,2\}$ satisfies the conditions of Theorem 2. Using $f(X)=X^{2}-2 X$, we can reduce the determination of L sharp pairs to that of $\{3,0\}$-sharp pairs. But unfortunately we do not have complete classification of $\{l, l+3\}$-sharp pairs.

Example $5 \quad L=\{-2,-1,0,2,3,4\}=\{-1,0,4\} \cup\{-2,2,3\}$ satisfies the conditions of Theorem 2. Using $f(X)=X^{3}-3 X^{2}-4 X$, we can reduce the determination of L-sharp pairs to that of $\{0,-12\}$-sharp pairs. But again we do not have complete classification of $\{l, l+12\}$-sharp pairs.

Remarks In Theorem 2, $f(\chi)$ is a generalized character of G and is not necessarily character. $f(\chi)$ is not necessarily normalized, even if χ is so.

References

[A-N] D. Alvis and S. Nozawa, Sharp characters with irrational values, J. Math. Soc. Japan, 48(1996), 567-591
[B] H. F. Blichfeldt, A theorem concerning the invariants of linear homogeneous groups with some applications to substitution groups, Trans. Amer. Math. Soc., 5(1984), 461-466
[C-K] P. J. Cameron and M. Kiyota, Sharp characters of finite groups, J. Algebra 115(1988), 125-143
[C-K-K] P. J. Cameron, T. Kataoka and M. Kiyota, Sharp characters of finite groups of type $\{-1,1\}$, J. Algebra 152(1992), 248-258
[N] S. Nozawa, Sharp characters of finite groups having prescribed values, Tsukuba J. Math. 16(1992), 269-277

