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Freiling’s Axiom of Symmetry (Aℵ0) is the following statement: For every
function F : 2ω → [2ω]≤ω which assigns a countable set of reals to each real,
there exist two distinct reals, say a and b, such that a /∈ F (b) and b /∈ F (a).

Fact 1 (Freiling[1]). ZFC |− Aℵ0 ↔ ¬CH. /

Galen Weitkamp has considered (in [3]) an effective version of Aℵ0 .
Fix a recursive bijection 〈 , 〉 : ω × ω → ω. For each a ∈ 2ω and n ∈ ω,

the real (a)n ∈ 2ω is defined by (a)n(k) = a(〈n, k〉). In this way every real
a ∈ 2ω naturally codes a countable set

{
(a)n : n ∈ ω

}
.

Definition. Let Γ be a pointclass. Then A(Γ) states: Let f : 2ω → 2ω be a
function whose graph as subset of 2ω × 2ω belongs to the class Γ, then there
exist two distinct reals a and b such that

∀n ∈ ω
[
x 6=

(
f(y)

)
n

& y 6=
(
f(x)

)
n

]
.

Fact 2 (Weitkamp [3]).

(1) ZF + DC |− A(Σ1
1).

(2) A(Π1
1) ↔ A(Σ1

2) ↔ 2ω 6⊂ L. /

Fact 2 (2) gives an effective version of Freiling’s Fact 1. However, there
are some difficulties within Weitkamp’s formulation:

1. Freiling has considered Anull and Ameager as well, replacing “countable”
by “null” and “meager” respectively. It is not clear how we can modify
Weitkamp’s setting to handle these generalizations.

2. Giving a countable set of reals is not the same thing as giving its code.
From a code you can easily obtain a countable set as Weitkamp does. But
for each countable set C ∈ [2ω]≤ω there exist uncountably many reals which
codes C, and you do not know how to choose one.

To investigate this second point more closely, suppose we are given a
relation R ⊂ 2ω × 2ω which is somehow nicely definable (Borel, analytic, or
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anything). Suppose also that for every x ∈ 2ω the vertical section Rx =
{

y :
R(x, y)

}
is nonempty and countable. In such a case can you always define a

function f : 2ω → 2ω such that Rx =
{

(f(x))n : n ∈ ω
}
? For example, the

following question should be a challenging exercise:

Question 3. Define a function f : 2ω → 2ω so that{(
f(x)

)
n

: n ∈ ω
}

=
{

y ∈ 2ω : y is recursive in x
}

for every x ∈ 2ω. At which level of the arithmetical hierarchy can such f be?

From this point of view, the following reformulation seems more natural
to me.

Definition. Let A∗(Γ) state: For a relation R ⊂ 2ω × 2ω in Γ, if every
vertical section Rx is countable, then there are two distinct reals a and b such
that both R(a, b) and R(b, a) fail.

This is not always equivalent to Weitkamp’s A(Γ). We still have

A∗(Σ1
2) ↔ A∗(∆1

2) ↔ 2ω 6⊂ L,

so A∗(Σ1
2) and A(Σ1

2) are equivalent. On the other hand, we have (by the
Fubini Theorem)

ZF + DC |− A∗(Π1
1).

Therefore A∗(Π1
1) is strictly weaker than A(Π1

1).

Our version has one obvious advantage. It is quite easy to formulate
A∗

null(Γ) and A∗
meager(Γ). Then by Fubini and Kuratowski-Ulam Theorems,

Fact 4. For every pointclass Γ,

(1) LM(Γ) → A∗
null(Γ), and

(2) BP(Γ) → A∗
meager(Γ). /

It is amusing to point out that in certain cases these arrows are inverted.

Fact 5.

(1) LM(∆1
2) ↔ A∗

null(∆
1
2), and

(2) BP(∆1
2) ↔ A∗

meager(∆
1
2).
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Here, I will give only a proof of (1), since (2) can be proved similarly.
We already know that LM(∆1

2) implies A∗
null(∆

1
2). To see the converse,

suppose that LM(∆1
2) fails. Then there is no random real over L. In other

words, every real r ∈ 2ω belongs to some null Gδ set with constructible code.
Let U ⊂ 2ω × 2ω be a universal Gδ set which is lightface Π0

2. Then our
hypothesis ¬LM(∆1

2) can be written as

∀r ∈ 2ω∃c ∈ 2ω
[
c ∈ L & µ(Uc) = 0 & r ∈ Uc

]
.

where µ denotes the Lebesgue measure. Since the
[
. . .

]
part of the statement

is Σ1
2, the Novikov-Kondô-Addison Theorem gives a ∆1

2 function ϕ : 2ω → 2ω

such that
∀r ∈ 2ω

[
ϕ(r) ∈ L & µ(Uϕ(r)) = 0 & r ∈ Uϕ(r)

]
.

Let <∗ be a Σ1
2 wellordering of 2ω ∩ L into order-type ω1. We may assume

L |=
[

<∗ is a Σ1
2-good wellordering

]
in the sense explained in Section 5A of [2]. Now define R ⊂ 2ω × 2ω by

R(x, y) ⇐⇒ ∃c ≤∗ ϕ(x)
[
µ(Uc) = 0 & y ∈ Uc

]
.

It is straightforward to see that every vertical section Rx is null and that every
two reals a and b satisfy either R(a, b) or R(b, a) according to ϕ(b) ≤∗ ϕ(a)
or not. Thus what remains to see is:

Lemma 6. The relation R is ∆1
2.

Proof. Let IS(x, y) be the predicate that tells x codes the initial segment
of ≤∗ with top y. Exercise 5A.1 of [2] shows that V = L implies that IS is
∆1

2. Even when V 6= L, the predicate

IS′(x, y) ⇐⇒ x, y ∈ 2ω ∩ L & L |= IS(x, y)

is still Σ1
2. We then have

¬R(x, y) ↔∀c ≤∗ ϕ(x)
[
µ(Uc) > 0 ∨ y /∈ Uc

]
↔∃b

[
b ∈ L & IS′(b, ϕ(x)) & ∀n ∈ ω

[
µ(U(b)n) > 0 ∨ y /∈ U(b)n

]]
which gives a Σ1

2 description of negation of R. /

This completes the proof of Fact 5.

Question 7. Does A∗
null(Σ

1
2) imply LM(Σ1

2)?
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