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Abstract

Let DC be the class of subsets of R that is uncountable, co-uncountable
and translation invariant modulo countable sets. In this paper we prove
that no Borel sets belongs to DC (Theorem 3); no ∆1

2 sets belongs to DC if
either every ∆1

2 set has the property of Baire or every ∆1
2 set is Lebesgue

measurable (Theorem 4); and there is a ∆1
2 set in DC if every real number

is constructible (Theorem 2).

Introduction

The continuum hypothesis (CH) has a variety of consequences on the structure
of real line. The book “L’hypothèse du Continu” ([6]) by W.Sierpiński is a
large collection of bizarre consequences of CH that seem not to follow from the
usual ZFC axioms. In this article, we study propositions C68–C70 in [6] from
viewpoint of descriptive set theory. These propositions concern with subsets
of the real line which are translation invariant except countable sets. Before
stating the propositions, we should give some definitions.

Throughout the article, R means the real line. For A ⊂ R and t ∈ R, A + t
is the set of a + t with a ∈ A. The set A − t is defined similarly.

We say a set A ⊂ R is translation invariant modulo countable sets if for every
t ∈ R the symmetric difference (A + t)△A is countable. This is clearly the case
when either A or R \A is countable. If there is any other set that is translation
invariant modulo countable sets, let us call it a DC set. By definition

DC = {A ⊂ R : |A| > ω, |R \ A| > ω, (∀t ∈ R)[ |(A + t)△A| ≤ ω ] }.

Now we can state Sierpiński’s propositions as follows: CH implies that DC
is not empty; it contains a meager set (C68), a null set (C69), and a non-
measurable set (C70). The main results of this article says that there are no
Borel sets in DC (Theorem 3) and that whether some ∆1

2 sets belong to DC is
independent of ZFC+CH(Theorems 2 and 4).
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1 Continuum Hypothesis and DC

First of all, we give the proof of the following

Theorem 1. The class DC is not empty if and only if CH holds.
Proof: Assume CH. Then there exists an ω1-sequence 〈Gα : α < ω1〉 such that

(1) each Gα is a countable subgroup of 〈R,+〉;

(2) G0 ⊂ G1 ⊂ · · · ⊂ Gα ⊂ Gα+1 ⊂ · · · ;

(3) Gα+1 contains at least 3 congruence classes modulo Gα; and

(4) R =
∪

α<ω1
Gα.

For each α, choose cα to be a member of Gα+1 that is not in Gα. Then let
A =

∪
α<ω1

(Gα + cα). It is now easy to see that A ∈ DC .
For the converse, let A ∈ DC . Pick ω1 many distinct members, say xξ

(ξ < ω1), from A. For every t ∈ R, there is a ξ such that xξ + t ∈ A, since
otherwise (A + t) \ A would contain uncountably many members of the form
xξ + t. From this it follows that R =

∪
ξ<ω1

(A − xξ). Therefore

R \ A =
∪

ξ<ω1

((A − xξ) \ A).

Being the union of ω1 many countable sets, the right hand side has size at most
ω1. Similar argument shows A has size at most ω1. ¥

The “if” part of Theorem 1 is due to Sierpiński. It has first appeared in
[7]. Even earlier, S.Banach has shown similar result using the circle instead
of the line ([1]). The proof of “only if” part of the theorem resembles that of
the Rothberger theorem (that if both Lusin and Sierpiński sets exist then CH
holds). This is why we suspect that Sierpiński knew it. But as far as we know,
Sierpiński did not write about it. The equivalence has been pointed out by
J.Shinoda in [5, Section 3]. M.Laczkovich’s paper [3] contains related results in
more general context. We do not know who was the first to publish.

Next we show, assuming the axiom of constructibility (V = L), the con-
struction described in Theorem 1 can be carried out in a Σ1 way over the class
of hereditarily countable sets, so that the resulting set A and its complement
are both Σ1

2.
From here to the end of this section, we assume V = L. Define δα for each

α < ω1 as follows:

(5) δ0 = ω + ω;

(6) δα+1 is the smallest limit δ such that Lδ |= “Lδα is countable”; and

(7) δλ = supα<λ δα for limit λ.
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Then the sequence 〈δα : α < ω1〉 is ∆1 over Lω1 . Let Gα = R ∩ Lδα
. It is easy

to see that 〈Gα : α < ω1〉 meets four clauses in the proof of Theorem 1. We
choose cα to be the <L-smallest member of Gα+1 \ Gα, where <L denotes the
canonical wellordering of the constructible universe. The statement “x = cα” is
∆1 over Lω1 since, in Lω1 ,

x = cα ⇐⇒ x ∈ R ∧ x ∈ Lδα+1 ∧ x /∈ Lδα

∧ (∃M)[M = Lδα+1 ∧ (∀y ∈ M)[y ∈ R ∧ y <L x =⇒ y ∈ Lδα ]]
⇐⇒ x ∈ R ∧ x ∈ Lδα+1 ∧ x /∈ Lδα

∧ (∀M)(∀y)[M = Lδα+1 ∧ y ∈ M ∩ R ∧ y <L x =⇒ y ∈ Lδα
]

and all notions involved are ∆1. Now our DC set A and its complement can be
defined over Lω1 by

x ∈ A ⇐⇒ x ∈ R ∧ (∃α < ω1)[ x − cα ∈ Lδα
], and

x ∈ R \ A ⇐⇒ x ∈ R ∧ (∃α < ω1)[ x ∈ Lδα+1 ∧ x − cα /∈ Lδα
]

both being Σ1. Therefore A is ∆1 definable over Lω1 . This establishes

Theorem 2. The axiom of constructibility implies the existence of ∆1
2 sets in

DC. ¥

Sierpiński’s propositions ([6, C68–C70]) tell that CH implies sets in DC with
various additional properties. This can also be achieved in the context of The-
orem 2. If we choose cα to be a Cohen real over Lδα for each α < ω1 (this may
require minor revision of the definition of 〈δα : α < ω1〉), then the resulting DC
set A becomes a Lusin set (i.e., uncountable set which shares only countably
many points with every meager set.) Similarly, if cα is a random real over Lδα

then A is a Sierpiński set (i.e., uncountable set which shares only countably
many points with every null set.) Therefore V = L implies there are two ∆1

2

sets in DC , one of which is null and lacks the Baire property while the other is
meager and non-measurable.

2 Borel Sets

In the previous section we have seen it is consistent that some member of DC is
definable. Here we show that even if some members of DC are definable, they
are not “too simple.” That is to say:

Theorem 3. No Borel sets belong to DC.

The proof uses the following general fact about DC sets.

Lemma 2.1. Let A ∈ DC. If A has the Baire property, then either A or R \A
is meager. If A is Lebesgue measurable, then either A or R \ A is null.
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Proof: Suppose A has the Baire property, but is not either meager nor co-
meager, then there are intervals I and J such that I \ A and J ∩ A are both
meager. By cutting down the longer if necessary, we may assume I and J have
the same length. Say I = J + t. Then since

J \ ((A + t) \ A) = ((I \ A) + t) ∪ (J ∩ A)

and this is a meager set, (A+ t) \A must be uncountable. The measure version
is proved similarly using a pair of intervals on which A and its complement
respectively have density greater than 1/2. ¥

The following lemma is of the all importance.

Lemma 2.2. Let B ⊂ R be meager and P ⊂ R be perfect. Then there is a
number t ∈ R such that (P + t) \ B contains a perfect set.
Proof: Let B ⊂

∪
n∈ω Fn with Fn nowhere dense closed. For each finite binary

sequence σ ∈ <ω2, we assign xσ ∈ P by induction on the length |σ| of σ. Along
with the induction, we also find closed intervals In for n ∈ ω.

First of all, x∅ is an arbitrary member of P and I0 is an arbitrary non-
degenerate closed interval.

Suppose that we have obtained In and xσ for all binary sequence σ of length
n. We can take a closed interval In+1 that is contained in the interior of In and
disjoint from the nowhere dense set

∪
|σ|=n(Fn − xσ). Let us take such In+1

shorter than half of In. Then we pick two distinct members xσ⌢0 and xσ⌢1 of
P so close to xσ that for i ∈ {0, 1}

(In+1 + xσ⌢i) ⊂ (In + xσ) \ Fn

and
|xσ⌢i − xσ| <

1
2

min{ |xτ − xτ ′ | : τ, τ ′ ∈ n2, τ ̸= τ ′ }.

Thus obtained xσ for all σ ∈ <ω2, define xβ = limn→∞ xβ¹n for each β ∈ ω2.
We also define t to be the unique common member of all In’s. Then for any
n ∈ ω and any β ∈ ω2, we have t + xβ ∈ In+1 + xβ¹(n+1) ⊂ (In + xβ¹n) \ Fn.
Therefore the set of all reals of the form t + xβ is a perfect subset of P + t
disjoint from B. ¥

Measure version of Lemma 2.2 is also available.

Lemma 2.3. Let B ⊂ R be null and P ⊂ R be perfect. Then there is a number
t ∈ R such that (P + t) \ B contains a perfect set.
Proof: Given a perfect set P , let µ be a Borel probability measure such that
µ(P ) = 1 and µ({x}) = 0 for all x ∈ R. Let E be a closed set such that
E ∩B = ∅ and 0 < m(E) < +∞ where m( ) denotes the Lebesgue measure. By
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invariance of Lebesgue measure, m(E − x) = m(E) for all x ∈ R. By Fubini’s
Theorem, we get

m(E) =
∫

R
m(E − x) dµ(x)

=
∫

R

∫
R

χE(t + x) dm(t) dµ(x)

=
∫

R

∫
R

χE(t + x) dµ(x) dm(t)

=
∫

R
µ(E − t) dm(t)

For this is not zero, we have µ(E − t) > 0 for some (positive-measure set of)
t ∈ R. For any such t, we have µ(P ∩ (E − t)) > 0 since µ is concentrated on
P . Fix one such t. For µ vanishes on countable sets, it follows that P ∩ (E − t)
is an uncountable closed set. Therefore it contains a perfect subset. So does its
translated image (P + t) ∩E. Thus we can find a perfect subset of (P + t) \B.
¥

Now let us prove Theorem 3. Suppose that B ⊂ R is a Borel set in DC . By
Lemma 2.1, either B or R \ B is meager. For definiteness, say B is meager. If
B is uncountable, then it contains a perfect subset P . But then by Lemma 2.2,
there is a t ∈ R such that (P + t) \ B contains a perfect set. Contradicting the
assumption that B ∈ DC . ¥

In order to extend Theorem 3 to ∆1
2 sets, we need the following classic

result due to Mansfield and Solovay. Proof can be found in [2] (Section 25,
Theorem 25.53 and Lemma 25.54).

Lemma 2.4. (Mansfield and Solovay) If a (lightface) Σ1
2 set of reals contains

a non-constructible member, then it contains a perfect subset. In other words,
every Σ1

2 set without a perfect subset consists only of constructible reals. ¥

Theorem 4. Suppose either that every ∆1
2 set has the Baire property or that

every ∆1
2 set is Lebesgue measurable. Then no ∆1

2 sets belong to DC.
Proof: Suppose every ∆1

2 has the Baire property. Towards the contradiction,
let A be a ∆1

2 set in DC . We may assume A is a (lightface) ∆1
2 set, since general

cases can be handled similarly through straightforward relativization argument.
By Lemma 2.1, either A or R \ A is meager. Switching to the complement if
necessary, we may assume A is meager. Then by Lemma 2.2, A cannot contain
a perfect subset. Therefore Lemma 2.4 implies that A ⊂ L. If t ∈ R is not in
L, then (A + t) ∩A = ∅ so (A + t) \A is uncountable. Contradiction. The case
of measurability is similar, using Lemma 2.3 instead of Lemma 2.2. ¥

Note that our assumption that ∆1
2 set has the Baire property is strictly

weaker than the perfect set theorem for ∆1
2, from which the result of Theorem 4

follows through same argument as Theorem 3.
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Our key lemma 2.2 has first been observed by T. Yorioka using forcing ar-
gument, whereas the present combinatorial proof belongs to the present author.
Yorioka has pointed out that if every set has the property of Baire and either
is countable or contains a perfect subset (just in the case under AD, the axiom
of determinacy, or in the Solovay model), then no sets belong to DC . In other
words, we have the following

Theorem 5. (Yorioka) Let κ be a strongly inaccessible cardinal and let Lv(κ) be
the Levy partial order that makes all ordinals below κ countable (see [8]). Then
in the Lv(κ)-generic extension, CH holds and yet no sets in OD(R) belong to
DC.

Therefore, it is consistent (if so is an inaccessible cardinal) that DC is non-
empty but no members of the class are definable.

3 Analytic sets

One question remains open: whether analytic sets in DC exist. This is difficult
because of asymmetry in properties of Σ1

1 and of the dual class Π1
1.

Question. Is it consistent that there exists an analytic set in DC?

We do not know the answer yet. Here we record few facts that we know
concerning this question.

Theorem 6. If A ∈ Σ1
1 ∩ DC, then (1) A is co-meager and co-null and meets

every perfect set; and (2) There is a real number r from which every real number
is constructible, i.e., R ⊂ L[r] holds.
Proof: (1) follows from Lemmas 2.1 and 2.2 using the perfect set theorem (that
every uncountable analytic set contains a perfect subset.) Suppose there is a
analytic set A in DC . If A is a Σ1

1(r) set with r ∈ R. Then, as in our proof of
Theorem 4, we have R\A ⊂ L[r]. As every real number can be expressed as the
difference of two members of R \ A, L[r] contains all real numbers. This is (2).
¥

Readers familiar with A.Miller’s [4] might expect that the construction in
Theorem 2 could be carried out in uniform Σ1 way over countable models, so that
the set A would be Π1

1. This is not the case. Indeed, such an argument would
produce a pair of ∆1

1 (hence Borel) sets, contradicting Theorem 3. Moreover, the
next theorem seems to impose severe restriction on recursion-theoretic methods,
for there is no way to produce a set in Π1

1 ∩ DC by hyperdegree argument.

Theorem 7. If A is a (lightface) Π1
1 set which is closed under hyperarithmetical

equivalence, then A /∈ DC.
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Let us review some recursion-theoretic concepts we need for the proof of
Theorem 7.

Let X be a subset of ω. Let ωX
1 be the smallest ordinal α > ω such that the

structure 〈Lα[X],∈, X〉 is a model of ∆0-Collection axiom scheme. Despite the
name omega-one, this is merely a countable ordinal. The smallest such ordinal,
namely ω∅

1 is called the Church-Kleene omega-one and denoted by ωCK
1 .

Let X and Y be subsets of ω. We say X is hyperarithmetically reducible to
Y (in symbols, X ≤h Y ) if X ∈ LωY

1
[Y ]. When X ≤h Y and Y ≤h X, we

say X and Y are hyperarithmetically equivalent (in symbols, X ≡h Y .) The
equivalence class of X under ≡h is denoted by [X]h and called the hyperdegree
of X. The hyperdegrees are partially ordered by ≤h. The smallest hyperde-
gree, denoted by 0, is that of ∆1

1 definable subsets of ω, namely members of
P(ω) ∩ LωCK

1
. Note that for each Y ⊂ ω there are only countably many X

which is hyperarithmetically reducible to Y . In particular, each [X]h consists
of countably many subsets of ω.

These definitions extends naturally to other countable objects such as real
numbers, infinite sequences of integers, etc.

A real number x is said to be quickly constructible if x ∈ Lωx
1
. Let C1 be

the set of all quickly constructible reals. The next lemma lists some basic facts
about C1.

Lemma 3.1. (1) C1 is a Π1
1 set. (2) A Π1

1 set A contains a perfect set if
and only if A ̸⊂ C1. (3) C1 is contained in L. (4) Every constructible real
is hyperarithmetically reducible to some member of C1. (5) Hyperdegrees of
members of C1 is wellordered by ≤h into the order-type ωL

1 . ¥

The essential part of our proof of Theorem 7 is formulated as follows.
There is a perfect binary tree T ⊂ <ω2 of which every path is a Cohen real

over LωCK
1

. In fact, there is such a T whose hyperdegree is as low as, 0′, the
second smallest hyperdegree in C1. Fix such T . Let 〈sn : n ∈ ω〉 ∈ LωCK

1
be an

enumeration of <ω2. Define a real number b = 0.b1b2b3 · · · (decimal) by

b2n+1 =

{
2, (sn ∈ T );
3, (sn /∈ T );

and b2n+2 = 0.

Clearly, b and T are hyperarithmetically equivalent.
The perfect tree T naturally codes a homeomorphism of ω2 onto the set of all

paths of T . For each β ∈ ω2 let T (β) be the path of T that corresponds to β by
the natural homeomorphism. Then we have T (β) ≤h 〈T, β〉 and β ≤h 〈T (β), T 〉.

Given β ∈ ω2, define a real number a = 0.a1a2a3 · · · (decimal) by

a2n+1 = 0;
and a2n+2 = 4 + T (β)(n).

Then a and T (β) are hyperarithmetically equivalent.
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Finally let c = a + b. Then c ≡h 〈T, T (β)〉. Therefore if β ≥h T , then c and
β are hyperarithmetically equivalent.

Now, a = c−b is hyperarithmetically equivalent to T (β) which is a Cohen real
over LωCK

1
. By genericity, we have T (β) /∈ LωCK

1
and ω

T (β)
1 = ωCK

1 . Therefore a
is not a quickly constructible real.

Lemma 3.2. Let A be an uncountable subset of C1 which is closed under
hyperarithmetical equivalence. Then A \ (A + b) is uncountable.
Proof: Let x be a member of A such that T ≤h x. By the assumption [x]h ⊂ A.
Define a and c from any β ∈ ω2 such that β ≡h x. Then c ≡h x so c ∈ A. Since
c−b = a /∈ C1, we have c ∈ A\(A+b). From this it follows that A\(A+b) meets
hyperdegree of every x ∈ A such that x ≥h T . But by results of Lemma 3.1,
there are uncountably many such hyperdegrees in A. ¥

Theorem 7 follows immediately from Theorem 6 and Lemmas 3.1–3.2.
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