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Abstract

We consider Problems 2 and 3 in [3] asked by M.Laczkovich concerning
the difference property of Borel measurable functions. We show that the
axiom of determinacy implies affirmative answer to Problem 2 (Theo-
rem 2) and that Problem 3 is settled affirmatively for all infinite order
Baire classes (Theorem 1.)

Introduction

In this article, we consider Problems 2 and 3 asked by M.Laczkovich in [3].
We are, however, not able to give here the final answer to either. Instead, we
show some evidence that leads us to conjecture that affirmative answers to both
problems are possible (at least, in the sense of consistency.)

Laczkovich’s paper [3] pursues questions about the difference property of
real functions: What can you say about function f : R → R when the differences
f(x+h)−f(x) are known to be in a given class for all h ∈ R? This pursuit was
initiated by N.G. de Bruijn who proved that if the difference f(x + h) − f(x)
is a continuous functions of x for each fixed h ∈ R, then f = g + A with
continuous g and additive A (that is to say, A satisfies the functional equation
A(x + y) = A(x) + A(y).) It was then asked whether similar result holds for
other classes of real functions.

In [3], Laczkovich considered the class of Lebesgue measurable functions.
Now it is known that whether de Bruijn’s result transfers to the context of
Lebesgue measurable functions is independent of the usual axioms of set theory.
See [4]. Along the line of pursuit, Laczkovich left three questions open, first of
which he solved by himself shortly after that. Remaining two questions were
the following
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Problem 2. Suppose that f(x+h)−f(x) is Borel measurable for every h ∈ R.
Is it true that the functions f(x + h) − f(x) belong to the same Baire class of
order α < ω1?

Problem 3. Let f be Borel measurable and suppose that f(x + h)− f(x) is of
Baire class α for every h ∈ R. Does it follow that f is of class α, too?

R.Filipów and I.RecÃlaw in [1] showed that the Continuum Hypothesis (CH)
implies the negative answer to Problem 2. For all bounded Borel functions,
Problem 3 can be answered affirmatively using a theorem of Louveau about
measurability of integral operations. See [5, Section 7], where Problem 3 appears
as Problem 7.3.

In Section 2 of this article, Problem 3 is answered affirmatively for all infinite
α (Theorem 1). Using the same idea, we show in Section 3 that a very strong
form of affirmative answer to Problem 2 holds under the axiom of determinacy or
in the Solovay model (Theorem 2). We do not insist that this solves Laczkovich’s
problem, since the full axiom of choice fails in these models. Another fragment
of affirmative answer is that if the Lebesgue measure is ω2-additive and if every
projective set is measurable, then every projective f satisfies the conclusion of
Problem 2 (Theorem 3).

1 Preliminaries

We need some notions and notations from Descriptive Set Theory. Chapters 11
and 25 of [2] are handy reference.

In this note, against set-theorists’ custom, R refers to the real line. We
give the set ω of non-negative integers the discrete topology and the infinite
product ωω the product topology. In our exposition, all spaces involved are
of the form R` × ωm × (ωω)n (`,m, n being non-negative integers). We fix a
recursive enumeration 〈Ii : i ∈ ω〉 of all open intervals with rational endpoints.

Let us denote by B the class of all Borel sets. B ramifies into the hierarchy:
B =

∪
1≤α<ω1

Σ0
α =

∪
1≤α<ω1

Π0
α as defined in Chapter 11 of [2].

Let us denote by P the class of all projective sets. P also ramifies into
the hierarchy: P =

∪∞
n=1 Σ1

n =
∪∞

n=1 Π1
n. Here, Σ1

1 is the class of analytic
sets (continuous images of Borel sets), Π1

1 is the class of coanalytic sets (i.e.,
complements of analytic sets), Σ1

2 is the class of continuous images of Π1
1 sets

(so-called PCA sets), Π1
2 is the class of complements of Σ1

2 sets (so-called CPCA
sets). We also define ∆1

n = Σ1
n ∩ Π1

n. Thus by the Suslin theorem ∆1
1 = B.

Each ∆1
n forms a countably additive Boolean algebra, while none of Σ1

n nor Π1
n

is closed under complements. The class P of all projective sets forms a finitely
additive Boolean algebra, but not closed under countable unions.

In the proof of Theorem 1, we need the notions of lightface classes Σ0
α, ∆1

1,
etc. See Chapter 25 of [2] and Section 1 of [6].

Each of non-selfdual classes from Borel and projective hierarchies (i.e., Σ0
α,

Π0
α, Σ1

n and Π1
n) admits a universal set. Let Γ be one of those classes. A set
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E ⊂ ωω × R is a universal Γ set provided that E ∈ Γ and that every A ⊂ R in
Γ is a section of E (that is to say, there is a c ∈ ωω such that A = Ec = {x ∈
R : 〈c, x〉 ∈ E }.) The classes which are closed under complements, such as ∆1

n,
B and P , do not admit a universal set.

In the proof of Theorem 2, we also need the concept of a Π1
1 coding system

for Borel sets. That is a triple (W,B+, B−) such that

(i) W ⊂ ωω and B+, B− ⊂ ωω × R;

(ii) W , B+ and B− are Π1
1;

(iii) if c ∈ W , then ∀x ∈ R [〈c, x〉 ∈ B+ ⇐⇒ 〈c, x〉 /∈ B− ]; and

(iv) for every Borel set B ⊂ R there is c ∈ W such that x ∈ B ⇐⇒ 〈c, x〉 ∈
B+.

Thus section of B+ at every c ∈ W is Borel and conversely every Borel subset
of R is a section of B+ at some c ∈ W . Such a coding system exists. See [2,
page 504].

Let Γ be one of the classes in Borel and projective hierarchies. We say a
function f : R → R is Γ-measurable if for every open interval I the preimage
f−1[I] belongs to the class Γ. f is said to be Γ-recursive if set of all pairs 〈x, i〉
such that f(x) ∈ Ii is, as a subset of R×ω, belongs to Γ. While Γ-recursiveness
is, in general, a much finer notion than Γ-measurability, two notions coincide
when Γ is closed under arbitrary countable unions.

Every Borel function is Σ0
α-measurable for some countable ordinal α. A

function is of Baire class α if and only if it is Σ0
α+1-measurable. Relying on this

fact, we stop mentioning Baire classes of functions hereafter.
We say a function f : R → R to be projective if its graph is a projective

subset of R × R. This is equivalent to f being P -recursive, slightly stronger
than being P -measurable, since P is not closed under countable unions. It is
immediate from the definition that a functions is projective if and only if it is
Σ1

n-measurable for some n ∈ ω.
Note that since each of Σ1

n and Π1
n are closed under countable unions,

and since we are dealing only with total (i.e., defined everywhere) functions,
Σ1

n-recursive, Σ1
n-measurable, Π1

n-recursive, Π1
n-measurable, ∆1

n-recursive and
∆1

n-measurable are all the same thing. Therefore Σ1
1-measurable functions are

precisely Borel functions. This is equivalent to the graph of function being an-
alytic. On the other hand, functions with coanalytic graph are not necessarily
Π1

1-measurable (= B-measurable). In fact, it is consistent that there exists a
Lebesgue non-measurable function with coanalytic graph.

We define the difference function as follows. Given f : R → R and h ∈ R,
the function 4hf : R → R assigns f(x + h) − f(x) to each x. Clearly, if f is
continuous, Borel measurable, Lebesgue measurable, etc., so is 4hf for every
h ∈ R.
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2 Borel functions with Σ0
α differences

Here we are going to prove

Theorem 1. Let α > 0 be a countable ordinal. Let f : R → R be a Borel
function such that 4hf is Σ0

α-measurable for every h ∈ R. Then f is Σ0
1+α-

measurable.

This partially answers Laczkovich’s Problem 3. In particular, the problem
is settled affirmatively for all infinite α since α ≥ ω implies 1 + α = α.

First of all, note that we may assume α > 1 because the other case of α = 1
is covered by de Brujn’s theorem.

Let Eα ⊂ ωω × R be a universal Σ0
α set. Then our assumption on f can be

written

∀h ∈ R∀i ∈ ω∃c ∈ ωω∀x ∈ R[Eα(c, x) ⇐⇒ 4hf(x) ∈ Ii ]. (1)

Let P (h, i, c) denote the subformula “∀x ∈ R[. . . ]” in the above statement.
Then P is, as a subset of R × ω × ωω, coanalytic. We have ∀h∀i∃cP (h, i, c).
Then by Kondô’s uniformization theorem (see [2, Theorem 25.36] or [10, Theo-
rem 5.14.1]), there exists a function C : R×ω → ωω with coanalytic graph such
that

∀h ∈ R∀i ∈ ω P (h, i, C(h, i)).

We want to approximate the selection function C by Borel measurable functions.
But this is not possible in general, since a function with coanalytic graph may
even fail to be Lebesgue measurable. Thus at this point, we have to introduce
the extra hypothesis that every real function with coanalytic graph is Lebesgue
measurable. This is equivalent to Lebesgue measurablity of all ∆1

2 sets of reals.
The hypothesis holds, for example, under Martin’s axiom with the negation of
CH. The important point is that we can always “force” it by a standard forcing
machinery. At the end of proof, this extra hypothesis will eventually be removed
using the absoluteness argument.

By virtue of the extra hypothesis, C(h, i) is a measurable function of h for
every i ∈ ω. By Lusin’s theorem, there are compact sets Kn ⊂ R (n ∈ ω)
such that R \

∪
n∈ω Kn is null and the restriction of the function C to Kn × ω

is continuous. For each n and i in ω, define functions gn,i : Kn → ωω by
gn,i(h) = C(h, i).

Let A =
∪

n∈ω Kn. Then A+A = R. So R =
∪

n,m∈ω(Kn+Km). If h ∈ Kn+
Km, then Kn∩(h−Km) 6= ∅. Therefore we can let un,m(h) = min(Kn∩(h−Km))
and vn,m(h) = h−un,m(h). All these functions are Σ0

2-measurable since un,m(h)
(resp. vn,m(h)) is upper (resp. lower) semi-continuous.

Now let {Lj}j∈ω enumerate {Kn + Km}n,m∈ω. Let uj and vj be corre-
sponding functions un,m and vn,m. For each h ∈ R let H0(h) = uj(h) and
H1(h) = vj(h) for the unique j such that h ∈ Lj \

∪
j′<j Lj′ . Then H0 and

H1 are Σ0
2-measurable functions defined on R. For every h ∈ R we have

H0(h),H1(h) ∈ A and h = H0(h) + H1(h).
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Let i ∈ ω. Since H0(h) ∈ A, we have C(H0(h), i) = gn,i(H0(h)) for any n ∈ ω
such that H0(h) ∈ Kn. Therefore 4H0(h)f(x) ∈ Ii if and only if (∃n)[H0(h) ∈
Kn ∧ Eα(gi,n(H0(h)), x) ]. Similar equivalence holds for H1(h). Since h =
H0(h)+H1(h), the equation 4hf(x) = 4H0(h)f(x+H1(h))+4H1(h)f(x) holds.
We thus have

4hf(x) ∈ Ii ⇐⇒ ∃i0∃i1[ Ii0 + Ii1 ⊂ Ii

∧4H0(h)f(x + H1(h)) ∈ Ii0

∧4H1(h)f(x) ∈ Ii1 ]
⇐⇒ ∃i0∃i1∃n∃m[ Ii0 + Ii1 ⊂ Ii

∧ H0(h) ∈ Kn

∧ H1(h) ∈ Km

∧ Eα(gn,i0(H0(h)), x + H1(h))
∧ Eα(gm,i1(H1(h)), x) ]

for every h ∈ R, i ∈ ω and x ∈ R. This equivalence establishes a definition of
4hf(x) as functions of two variables h and x.

If you substitute Σ0
2-measurable functions gn,i0(H0(h)) and gm,i1(H1(h))

into Σ0
α formulas Eα, the results are Σ0

1+α. Subformulas H0(h) ∈ Kn and
H1(h) ∈ Km are Π0

2, hence Σ0
1+α if α > 1. So the last formula is Σ0

1+α. From
this it follows that f is Σ0

1+α-measurable.
This almost completes the proof of Theorem 1. But remember that we have

introduced an extra hypothesis that every ∆1
2 sets are measurable. Now we

remove this hypothesis.

Lemma 2.1. Let F : R × R → R be a (lightface) ∆1
1-recursive function and

ξ be a recursive ordinal. Then the set of x such that the sectional function
Fx(y) = F (x, y) is Σ0

ξ-measurable is Π1
1.

Proof: See [6, §3, Lemma 4]. Apply that result with A = { 〈x, 〈y, i〉〉 ∈ R ×
(R × ω) : F (x, y) ∈ Ii } and B = R × (R × ω) \ A. ¥

Let r be a real such that f is ∆1
1(r)-recursive and α < ωr

1. That is to say, α
is the order-type of a wellordering relation on ω which is recursive in r. Then
the relativized version of Lemma 2.1 implies that our assumption (1) is a Π1

1(r)
statement. Therefore its truth persists in every transitive model of set theory
which contains the parameter r among its members.

Let P be a notion of forcing that forces measurability of ∆1
2 sets (measure

algebra on ω12 should work fine.) In a P-generic extension of the universe, the
condition (1) still holds. Therefore f is Σ0

1+α-measurable as we have just proved.
Still in the “extended” universe, apply the Louveau Separation Theorem

([6, Theorem A], see also [7, Chapter 8] and [8, Section 6 of IV]) to the set
{ 〈x, i〉 ∈ R × ω : f(x) ∈ Ii }. We obtain a real s such that s ∈ ∆1

1(r) and f is
Σ0

1+α(s)-recursive. Being ∆1
1 definable from r the real s belongs to the “original”

universe. Therefore by absoluteness of Π1
1 formulas again, f is Σ0

1+α-measurable
in the original universe. ¥
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Thus we solved Laczkovich’s Problem 3 for infinite α. We should admit this
is not a quite satisfactory result since (a) it leaves the cases for finite α unsettled,
and (b) the argument involves metamathematical tools such as generic exten-
sions, absoluteness, lightface classes, etc. Anyway, this result and Laczkovich’s
solution for bounded functions strongly suggest that Problem 3 would be solved
affirmatively for all α.

Acknowledgement. I am happy to acknowledge that Theorem 1 has been greatly

improved by anonymous Referee’s genuine contribution. The original argument has

concluded that f is only Σ0
4+α-measurable.

3 Measure Uniformization Principle

The Measure Uniformization Principle (MUP) is the following statement: Let
X ⊂ R × R and suppose that its x-section Xx = { y : 〈x, y〉 ∈ X } is nonempty
for almost every x ∈ R. Then there exists a Borel function g : R → R such
that g(x) ∈ Xx holds for almost every x (‘almost every’ refers to Lebesgue mea-
sure here). This statement was proposed first by J.Mycielski who pointed out
that Solovay’s model of Lebesgue measurability ([9]) satisfies it. Then Solovay
observed that the Axiom of Determinacy implies MUP.

It is clear that MUP is incompatible with the full Axiom of Choice (AC).
When we talk about consequences of MUP, we thus have to use a weakend
version of AC, such as the Principle of Dependent Choice (DC): every partial
ordering without a maximal element admits an infinite ascending chain.

Using the main idea of Theorem 1, we obtain:

Theorem 2. (in ZF+DC) Assume MUP. Let f : R → R. If 4hf is Borel for
almost every h, then f is Borel.
Proof: Let (W,B+, B−) be a Π1

1 coding system of Borel subsets of R. Define
P (h, i, c) by

P (h, i, c) ⇐⇒ c ∈ W

∧ ∀x ∈ R[4hf(x) ∈ Ii ⇐⇒ 〈c, x〉 ∈ B+ ⇐⇒ 〈c, x〉 /∈ B− ]

Then by our assumption on f , for almost every h we have ∀i ∈ ω∃c P (h, i, c).
Therefore by MUP there is a Borel function C : R × ωω → ωω such that
for almost every h ∈ R we have ∀i ∈ ωP (h, i, C(h, i)). As in Theorem 1,
there are a Σ0

2 set A ⊂ R and Σ0
2-measurable functions H0 and H1 such that

∀h ∈ A∀i ∈ ωP (h, i, C(h, i)), H0(h) ∈ A, H1(h) ∈ A and h = H0(h) + H1(h)
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for every h ∈ R. Then we have for every h ∈ R, i ∈ ω and x ∈ R,

4hf(x) ∈ Ii ⇐⇒ ∃i0∃i1[ Ii0 + Ii1 ⊂ Ii

∧ 〈C(H0(h), i0), x + H1(h)〉 ∈ B+

∧ 〈C(H1(h), i1), x〉 ∈ B+ ]
⇐⇒ ∃i0∃i1[ Ii0 + Ii1 ⊂ Ii

∧ 〈C(H0(h), i0), x + H1(h)〉 /∈ B−

∧ 〈C(H1(h), i1), x〉 /∈ B− ].

This defines 4hf(x) as ∆1
1-recursive function of two variables h and x. Hence

f is Borel measurable. ¥

Now, let f : R → R be projective. Let Gα be the set of all h ∈ R such that
4hf is Σ0

α-measurable. Then 〈Gα : 1 ≤ α < ω1〉 forms an increasing ω1-chain
of subgroups of (R,+).

Lemma 3.1. Each Gα is a projective subset of R. More specifically, if f is
Σ1

n-measurable, then Gα is Σ1
n+1 for each α.

Proof: Let Eα ⊂ ωω × R be a universal Σ0
α set. Suppose that f is Σ1

n-
measurable. It follows that f is in fact ∆1

n-measurable. Then 4hf(x) is also
∆1

n-measurable as a function of two variables h and x. We thus obtain a Σ1
n+1-

definition of Gα as follows:

∀i ∈ ω∃c ∈ ωω∀x ∈ R[4hf(x) ∈ Ii ⇐⇒ Eα(c, x) ]. ¥

Theorem 3. Suppose that the Lebesgue measure is ω2-additive and that every
projective set is measurable. Let f : R → R be a projective function such that
4hf is Borel for every h ∈ R. Then there is a countable ordinal α such that
4hf is Σ0

α-measurable for all h ∈ R.
Proof: By the assumption on f , we have R =

∪
1≤α<ω1

Gα. The whole real
line is covered by ω1 projective sets, which are by the assumption Lebesgue
measurable. Since the Lebesgue measure is ω2-additive, some Gα must be of
positive measure. But being a measurable subgroup of (R,+) such Gα must be
the whole line. This means 4hf is Σ0

α-measurable for every h ∈ R. ¥
Acknowledgement. I would like to thank Sakaé Fuchino, Daisuke Ikegami, Masaru

Kada and Yasuo Yoshinobu for inspirational discussion and kind advices. Special

thanks go to Teruyuki Yorioka who introduced me to the problem.

References

[1] R.Filipów and I.RecÃlaw, On the difference property of Borel measurable and
(s)-measurable functions, Acta Math. Hungar., 96(1-2) (2002), 21-25

7



[2] T.Jech, Set Theory (third ed.), Springer, 2003.

[3] M.Laczkovich, Functions with measurable differences, Acta Math. Acad.
Sci. Hungar., 35 (1980), 217–237.

[4] M.Laczkovich, Two constructions of Sierpiński and some cardinal invari-
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