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Let C be the Cantor space, i.e., the set {0, 1}ω topologized with the product
topology, taking {0, 1} discrete. Let {Jn}n∈ω enumerate in a straightforward
way the basic clopen sets in C. Let {G(k)}k∈ω recursively enumerate all the
finite unions of J ′

ns.
We give the standard product measure on C. In what follows, this product

measure is called the Lebesgue measure. This abuse of language would cause
little confusion, since the Cantor space C and the unit interval [0, 1] are measure
theoretically very similar. In fact, removing an appropriate countable set (i.e.,
the sequences of 0’s and 1’s having only finitely many places for 1) from C, we
obtain a measure space which is isomorphic to [0, 1]. For this reason, we also
call elements of C reals.

Let us denote by m, m∗ and m∗ respectively, the Lebesgue measure, its
inner and outer extensions respectively. We may assume that the enumerations
{Jn}n∈ω and {G(k)}k∈ω have been made so that the relations m(Jn) < p/(q+1),
m(G(k)) < p/(q + 1) and similar relations with “>” replacing “<” are all
recursive (for n, k, p, q in ω).

Covering games have been introduced by L. Harrington in order to give a
simpler proof of a theorem of J. Mycielski and S. Swierczkowski ([1]) that the
axiom of determinacy implies every set of reals is Lebesgue measurable.

Let A ⊂ C. Given a rational number ε > 0, we consider the following
two-person infinite game:

(I) a0 a1 · · ·
↘ ↗ ↘ ↗

(II) k0 k1 · · ·

where ai ∈ {0, 1} and ki ∈ ω. We impose the following restriction on Player II’s
choices: ki must satisfy m(G(ki)) < ε/4i for all i ∈ ω. A course of choices of
Player I specifies a real

α = (a0, a1, . . . , ai, . . .)

∗This article is a part of my Doctor’s Thesis submitted to Nagoya University on March
2001.
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while Player II specifies an open subset of G of C:

G = G0 ∪ G1 ∪ · · · ∪ Gi ∪ · · · .

Player I wins if α ∈ A \ G. Otherwise Player II wins. We call this game the
covering game associated with A and ε and denote it by G(A : ε). This game is
closely related to Lebesgue measurability.

Lemma 0.1 Let A ⊂ C. Let ε > 0 be rational. Consider the game G(A : ε).

(1) If Player I has a winning strategy, then m∗(A) ≥ ε;

(2) If Player II has a winning strategy, then m∗(A) < 4ε.

Proof: (1) Suppose that Player I has a winning strategy σ in G(A : ε). Let S
be the set of courses of legal moves of Player II:

S = { γ | (∀i)[ m(G(γ(i)) < ε/4i ] }.

Let H be the set of reals which Player I specifies by playing according to σ
which Player II plays legally:

H = {α ∈ C | (∃γ ∈ S)(∀i)[α(i)〉 = σ(γ(0), . . . , γ(i − 1)) ] }.

It is easy to see that S is closed, hence H is Σ1
1. For σ is a winning strategy of

Player I, we have H ⊂ A. Being Σ1
1, H is Lebesgue measurable. Therefore, in

order to prove m∗(A) ≥ ε, it is sufficient to show m(H) ≥ ε.
Suppose contrary that m(H) < ε. Then there exists a sequence {np}p∈ω of

integers such that

H ⊂
∪
p∈ω

Jnp and
∑
p∈ω

m(Jnp) < ε.

For each i ∈ ω let ui be the smallest integer u such that∑
p≥u

m(Jnp) <
ε

8i
.

Let γ(i) = ki be an index of the finite union

G(ki) =
∪

{Jnp | ui ≤ p < ui+1 }.

Then γ is a course of legal choices of Player II in G(A : ε) which defeats σ.
Contradiction.

(2) Suppose that τ is a winning strategy of Player II in G(A : ε). Let D
be the union of all open sets G(k) which τ tells Player II to choose against
Player I’s choices:

D =
∪

{G(τ(a0 . . . , ai)) | a0, . . . , ai ∈ {0, 1}, i ∈ ω }.
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Straightforward computation shows m(D) < 4ε. Since τ is winning of Player II,
we have A ⊂ D. (Q.E.D)

In fact, determinacy of covering games is, in a certain sense, equivalent to
Lebesgue measurability. We will return to this aspect later. As a consequence
of Lemma 0.1, we obtain a lightface version of the result of Mycielski and Swier-
czkowski.

Lemma 0.2 Let Γ be an adequate pointclass containing Π0
1. Suppose that the

game G(A : ε) is determined for every A ⊂ C in Γ and every rational ε > 0.
Then every Γ-set in C is Lebesgue measurable.

Proof: Suppose that a Lebesgue non-measurable set A ⊂ C belonging to ∃CΓ
exists. Let Bi and Bo be Borel sets such that Bi ⊂ P ⊂ Bo, m(Bi) = m∗(A)
and m(Bo) = m∗(A). Then m(Bo \ Bi) > 0. By the Lebesgue Density Lemma,
there exists a basic clopen set Jn such that

m(Jn ∩ (Bo \ Bi)) >
8
9
m(Jn).

From this it follows that

m∗(Jn ∩ A) <
1
5
m(Jn) and m∗(Jn ∩ A) >

4
5
m(Jn).

Here we may assume without loss of generality that Jn is of the form {α | s ⊂ α }
for some finite binary sequence s ∈ {0, 1}<ω. Let A′ = {α | s_α ∈ A }.
Then A′ belongs to Γ since this pointclass is closed under taking preimages
via recursive mappings. By the inequalities above, we have m∗(A′) < 1/5 and
m∗(A′) > 4/5. Then by Lemma 0.1, neither player has a winning strategy in
G(A : 1/5). (Q.E.D)

Now let LM denote the statement “every set of reals is Lebesgue measur-
able.” and ADC denote “all covering games are determined.” What Harring-
ton has proved is that ADC implies LM. We show the converse of this, hence
equivalence of LM and ADC.

Theorem 1 Let A ⊂ C be a Lebesgue measurable set. Then for every positive
number ε, the covering game G(A : ε) is determined.

Proof: Let H ⊂ A be a Borel set such that m(H) = m(A). Let us consider
another covering game G(H : ε). In fact, we can find such H among Σ0

2 sets.
This game is determined since the winning condition is Borel. We show that
the player who has a winning strategy for G(H : ε) wins G(A : ε).

If Player I has a winning strategy for G(H : ε), then the same player easily
wins G(A : ε) by using the same strategy, since H ⊂ A.

Suppose on the other hand that Player II has a winning strategy for the
game G(H : ε). Let τ be one such winning strategy. Then for any finite
sequence (a0, . . . , ai) of zeros and ones we have

m(G(τ(a0, . . . , ai))) <
ε

4i+1
.
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For each i ∈ ω define δi by

δi =
ε

4i+1
− max{m(G(τ(a0, . . . , ai))) | a0, . . . , ai ∈ {0, 1} }.

Then δi are positive for all i ∈ ω.
Since A is measurable, A \ H is a null set. Therefore it can be covered by a

countable family {N(sn)}n∈ω of basic clopen sets of which the sum of volumes
is less than δ0:

A \ H ⊂
∪
n∈ω

N(sn) and
∑
n∈ω

m(N(sn)) < δ0.

Find a strictly increasing sequence {ni}i∈ω of integers such that for each i ∈ ω∪
n∈ω

N(sn) and
∑

ni≤n∈ω

m(N(sn)) < δi.

In the game G(A : ε) let Player II play, against Player I’s moves a0, . . . , ai,
the integer ki such that

G(ki) = G(τ(a0, . . . , ai)) ∪
∪

ni≤n<ni+1

N(sn).

We show that this gives a winning strategy of Player II for G(A : ε). Let
Player II play by this strategy, producing ki (i = 0, 1, 2, . . .) against Player I’s
α = (a0, a1, a2, . . . ). The moves are legal, because

m(G(ki)) ≤ m(τ(a0, . . . , ai)) + m

 ∪
ni≤n<ni+1

N(sn)


< m(τ(a0, . . . , ai)) + δi

≤ ε

4i+1
.

If α /∈ A then Player II wins by definition. If α ∈ A then either α ∈ H or α ∈
A\H. Corresponding to each case, we have α ∈ G(τ(a0, . . . , ai)) for some i ∈ ω
(since τ is Player II’s winning strategy for G(H : ε)) or α ∈

∪
ni≤n<ni+1

N(sn)
for some i ∈ ω (since {N(sn)}n∈ω covers A \ H). Therefore we have anyway
α ∈ G(ki) for some i ∈ ω. Therefore this strategy is winning. (QED)

Therefore ADC and LM are equivalent statements on the basis of ZF+DC.
This fact suggests that the use of covering games for deriving measurability
from determinacy is indeed a right way, because the result (measurability) tells
that the tool (determinacy of covering game) is necessary.
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