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A real number x is said to be normal to base 10 if the decimal expansion

x = [x].d1d2d3 . . . (di = 0, . . . , 9)

contains every finite string of digits at the equal frequency (depending only on
the length of that string.) Such a number, as an array of digits, behave like
a random-number table. Of course, any true randome number (whatever it is)
should not only be normal to base 10 but also be normal to any other bases in
the obvious sense. A real number which is normal to all bases b = 2, 3, . . . is
called an absolutely normal number.

E. Borel provedthat almostall real numbersare absolutely normal. However,
he could not give any example of absolutely normal numbers. As for the classical
irrational numbers such as π, e,

√
2 etc., it is not yet known whether any of

them is absolutely normal (nor even normal to base 10.) Borel considered it
paradoxical that one could give the concept of an absolutely normal number
prove the existence of such a number without knowing any example.

H. Lebesgue, asking whether one couldprove the existence of a mathematical
being without defining it, wrote: if the concept is not illusory, a proof of the
existence should admit precision which leads to the definition of one of such
thing. He asserted that one could extract a definition of an absolutely normal
number from Borel’s argument.

In modern terminology, that Lebesgue has demonstrated can be formulated
as follows: Let K be a Π0

1 subset of the unit closed interval. Let s be the
Lebesgue measure of K. If s > 0 then K contains a member which are recursive
in s. Of course, as Lebesgue did not know modern recursion theory, this differs
from what he has really said. However, I wouldlike to call the result “Lebesgue’s
basis theorem.”

Sierpinski and Lebesgue independently gave direct existence proof of abso-
lutely normal numbers. Their pioneering works were followed by lots of results
which leaded to explicit construction procedures of normal numbers. See Sec-
tion 8, Chapter 1 of [1].

1 Lebesgue’s existence proof of normal numbers

What Lebesgue has proved in his article [2] is, in modern terminology, the
following
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Theorem 1 Let K be a Π0
1 subset of the unit closed interval. Let r = m(K) be

the Lebesgue measure of K. If r > 0 then K has members which are recursive
in r.

In [2], Lebesgue has concluded that one can explicitly define an absolutely
normal number using this argument.

By the theorem, a Π0
1 set whose Lebesgue measure is a positive recursive

real contains an infinitely many recursive members. Either condition here on
the measure, positiveness or recursiveness, cannot be dropped. There exist a
Π0

1 set (of measure zero) without a recursive member (Kleene) and Π0
1 set of

(non-recursive) positive measure without a recursive member (Tanaka). See [3].
H. Lebesgue, who lived the years before modern recursion theory, did not

state the result in this form. The result stated here has been extracted by the
present author from Lebesgue’s argument. However, we would like to call it
Lebesgue’s basis theorem because H. Lebesgue was the first person who noticed
the importance of the basis problem. In other words, Lebesgue was the first
person who claimed that mathematicians should take some care of effectiveness
of a mathematical object when they introduce it.

Let us get into the proof of Theorem 1. Let K be a Π0
1 subset of the unit

interval [0, 1]. Suppose r = m(K) > 0. We are required to give a way to find a
member of K which is recursive in r.

From now on we assume r to be recursive. The general case would be
obtained by straightforward relativization procedure.

Lemma 1.1 There is a recursive sequence {In} of rational open intervals such
that

[0, 1] \ K ⊂
∞⋃

n=1

In

and that the sum of the lengths

s∗ =
∞∑

n=1

|In|

is a recursive real less than 1.

Proof: Fix a small positive rational number ε. By the assumption that K is
Π0

1 there exists a recursive sequence {Jn} of rational open intervals such that

K = [0, 1] \
∞⋃

n=1

Jn.

From the assumption on the measure of K, the real

s = m

(
[0, 1]∩

∞⋃

n=1

Jn

)
= 1 − m(K)
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is a recursive real less than 1. Therefore we can find a recursive sequence of
increasing integers

N1 < N2 < · · · < Nk < · · ·

such that m(J1 ∪ ·· · ∪ JNk) > (1 − 2−(k+1)ε)s. Put E1 = (J1 ∪ JN1) and
Ek+1 = (JNk+1 ∪ ·· · ∪ JNk+1) \ (J1 ∪ ·· · ∪ JNk). Each Ek is union of finitely
many rational half-open intervals. The measure of Ek satifies

m(Ek) < 2−(k+1)εs.

One can easily find, for each k, a set Hk which is the open of finite family of
pairwise disjoint rational open intervals satisfying

Ek ⊂ Hk and m(Hk) < 2−(k+1)εs.

Moreover, such Hk and the open intervals that it consists of can be found in a
uniform manner recursive in k.

Now let {In} be a recursive enumeration of all rational open intervals which
constitute Hk’s. As for their lengths, we have

s∗ =
∞∑

n=1

|In| =
∞∑

k=1

m(Hk)

with {m(Hk)} being a recursive sequence of rational numbers tending to zero
with 2−k. Therefore its sum s∗ is a recursive real. By the choice of {Nk} we
have s∗ < (1 + ε)s. Therefore s∗ is smaller than 1 if ε is small enough. (QED)

Lemma 1.2 Let {In} be as in Lemma 1.1. Then the complement [0, 1]\
⋃∞

n=1 In

contains a recursive real.

Proof: To each finite binary sequence σ ∈ {0, 1}<∞, we assign closed interval
Bσ as follows: B∅ is [0, 1]; B0 is its left half [0, 1/2]; B1 is the right half [1/2, 1];
having defined Bσ, the next generation Bσ_0 and Bσ_1 are the left and right
halves of Bσ respectively.

Suppose that we are given a recursive sequence εk ↘ 0 of positive rational
numbers tending to zero. We will describe later how fast the sequence decreases.
Since the sum s∗ of lengths of In is a recursive real, we can find a recursive
sequences increasing integers Nk ↗ ∞ such that

∑

n>Nk

|In| < εk (k = 1, 2, . . . ).

Now, since
∑N1

n=1 |In| is smaller than s∗ and

N1∑

n=1

|In| =

N1∑

n=1

|In ∩B0|
N1∑

n=1

|In ∩ B1|,
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Either E
∑N1

n=1 |In ∩ B0| or
∑N1

n=1 |In ∩ B1| is smaller than s∗/2. Let α(0) = 0
if so is the former, otherwise let α(0) = 1. Then anyway we have

N1∑

n=1

|In ∩ Bα(0)| <
s∗

2
.

From this it follows that

N2∑

n=1

|In ∩ Bα(0)| +
N2∑

n=N1+1

<
s∗

2
+ ε1.

Arguing just as before, choose α(1) ∈ {0, 1} so that

N2∑

n=1

|In ∩ Bα(0)α(1)| <
s∗

2

2

+
ε1

2
.

Continuing inductively, choose α(k) ∈ {0, 1} so that

Nk∑

n=1

|In ∩ Bα(0)α(1)···α(k−1)| <
s∗

2k
+

ε1

2k−1
+ · · · +

εk−1

2
.

Thus if the sequence {εk} has been chosen so that

2ε1 + 22ε2 + · · · + 2kεk + · · · ≤ 1 − s∗,

then we have for each k that

Nk∑

n=1

|In ∩ Bα(0)···α(k−1)| <
1

2k
= |Bα(0)···α(k−1)|.

In order to make this, it is sufficient that εk satisfies

εk ≤ 1 − s∗

2 · 3k
, (k = 1, 2, . . . ).

Such recursive sequence {εk} can be found since s∗ is a recursive real.
The binary sequence α ∈ {0, 1} thus obtained is recursive. Therefore the

limiting point ξ of the decreasing sequence of intervals:

{ξ} =
∞⋂

k=1

Bα(0)···α(n−1)

is a recursive real. That ξ does not belong to the union of {In} is verified as
follows: Fix an arbitrary integer n. If k is so large enough that Nk ≥ n, then
Bα(0)···α(k−1) 6⊂ In because

|In ∩ Bα(0)···α(k−1)| < |Bα(0)···α(k−1)|.
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Therefore no neighborhood of ξ is contained in In. But, being an open interval,
In would be an neighborhood of ξ if ξ ∈ In. Therefore ξ does not belong to
In. For n being arbitrary this proves ξ /∈

⋃∞
n=1 In. Thus the lemma is proved.

(QED)

Theorem 1 follows immediately from these two lemmas. Here we have shown
how to define a memberof large compactsubsetof [0, 1], using the measure of the
set as a parameter. In mathematical practice, the measure of an explicitly given
compact set are expected to be explicitly computable. Therefore Theorem 1
supports our intuition that when a large compact set is given, we can choose an
element of it quite effectively. Although it is not always the case that a Π0

1 set
of positive measure has a recursive member, a counterexample is hardly found
in mathematical practice.
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