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Abstract

We give aweak basisresultforIl 5 setsof positive measure,which isclosely
related to our previous paper [2] in which we have assumed the existence
of 0%,

This note is devoted to the following

Theorem 1 Let s € 2* be a real such that XY is a recursive-in-s ordinal. Then
every I3 set of positive measure contains a Al(s) member.

This theorem is closely related to the maintheorem of our previous paper [2]:
if OF exists, then every 11} set of positive measure contains a member which
is arithmetical in 0%. Indeed, letting s = 0f the hypothesis of our present
theorem is achieved andthis almost (but not literally) proves our older theorem.
The hypothesis in the present result is weaker than that of the “0* version.”
Therefore, it seems to be applicable to wider context — See Section 3 for some
discussion on L-generic models in which there is a I} singleton s satisfying the
hypothesis of Theorem 1.

1 Tools

Let us fix, once for all, a recursive bijection between w X w and w. By the
notation (7,7 ) we mean both the ordered pair and the integer which is assigned
to this ordered pair by the fixed bijection. Each real r € 2“ codes a binary
relation <, defined as

i<, g == (i) =1

Let WO be the set of reals r € 2% such that <, well-orders w. Forr € WO,
let ||7|| be the order-type of the wellordering <,.. A countable ordinal & is said
to be recursive-in-a if £ = ||r|| for some real r € WO which is recursive in a.

The smallest ordinal which is not recursive-in-a is denoted by w{. Then
w{ equals the smallest ordinal £ > w such that the structure (L¢(a), €,a) is
admissible. A real x is hyperarithmetical in a if and only if it is Al(a) if and
only if it belongs to L, (a).



For a countable ordinal £ let WO(E) be the set of r € WO with ||| < &.
For each countable &, the set WO(¢) is Borel. Indeed we have:

Lemma 1.1 Let s € 2¥. Let € be a recursive-ins ordinal. Then WO(E) is a
Al(s) set.

Proof. Let r € WO be a real which is recursive in s and satisfies £ = ||7||.
Then a real = belongs to WO(€) if and only if there is an order-preserving
mapping of (w, <;) into an initial segment of (w, <,), if and only if z € WO
and there is no order-preserving mapping of (w, <,) into (w, <;). This gives a
Al(r) characterization of WO(). O

Let s € 2¢ be a real such that Rl is a recursive-in- s ordinal. This readily
implies R¥ is countable. Under this assumption, every IT3 set of reals is Lebesgue
measurable. The main theorem is proved by examining how this measurability
is realized in a certain effective way. To this end, we need two Al(s) sets:
Lemma 1.1 implies that the set WO(RE) of codes of constructibly countable
well-ordering is Al(s). Next we see that there is a Al(s) set C' of measure one
consisting of random reals over L.

For a real ¢t € 2¢ and an integer n € w, let (t), be the real defined by:
(t)n(i) = t({n,i)). Each real codes a countable sequence of reals in this way.

Lemma 1.2 There is a Ai(s) realt such that

{#)p:new}=2NL.

Proof. For2*NL = 2“NLyc, this set belongs to L [s], the smallest admissible
set containing s. Since Ly, [s] models “every set is countable,” there exists in it
a surjection f:w — 2N Lyr. Let t((n,d)) = f(n)(3). O

Let U C 2 x 2¢ be a I3 set which is universal for II5. Let ¢ be a real as in
Lemma 1.2. Let C C 2% be the following set

C={ze2:(Vye2*nL)[ulU,) =0 = z¢ Uy}
=Hze2¥:(Vn)[pUw,) =0 = ¢ Uy, }

where 1 denotes the Lebesgue measure. Then C is a Al(s) set suchthat u(C) =
1.

Lemma 1.3 Everyxz € C is random over L. Consequently the equality NlL[m] =
RE holds for all x € C. O

2 Reducing I} sets to II}(s)

Let P be a X3 set of reals, then there is a recursive function f: 2% x 2% — 2%
such that
z€P == (| flz,y) € WO].



By the Shoenfield Absoluteness Lemma, it is equivalent to say

x€P <= (Fye2?nLlz])]flz,y) € WOJ.

In such a case, we have f(z,y) € L[z]. So ||f(z,y)| < NlL[x]. It follows that

zeP <= (3ye2n L)) flz,y) e WORMD).
By these observations, we have:

Lemma 2.1 Let P be a Y3 set of reals, then there is a recursive function f :
2% x 2% — 2¥ such that

zeP <= Jy)flzy) e WORED.

Now let A be a I3 set of reals. Put P = 2%\ A, then by Lemmas 1.3 and 2.1,
there is a recursive fucntion f : 2% x 2 — 2% such that

1€C = [z€A <= (Vy)[f(z,y) ¢ WOR])]].
Therefore we have
Lemma 2.2 Let A and f as above. Then
ANC={rec2¥:2cC& (Vy)|f(z,y) ¢ WORF)]}.
Consequently, AN C is a I3 (s) set.

If A has positive Lebesgue measure, so is AN C, for C' contains almost all
reals. Being a IT}(s) set of positive measure, AN C contains a Al(s) real by
the Sacks-Tanaka Basis Theorem ([4], Chap.IV, 2.2). Thus we have proved the
main theorem.

3 Some remarks

Theorem 1 would be of no insterst unless there exists a definable real which
makes RX countable. The simplest way to make Rl countable is to add to L
a generic function on w onto XL by forcing with finite partial functions. This
forcing adds no ordinal-definable reals. Hence in the generic extension the non-
constructible reals form a II} sets of positive measure which does not contain
any ordinal-definable real.

Much finer method to force XY countable have been invented by Jensen and
Solovay. In [3] they give a forcing notion P € L and a I} formula ¢ such that
if G C P is generic then there exists a real a € V[G] such that

1. Lla] = (V2 Cw)[p(z) <= z=a];

2. every constructible real is recursive in a.



Clause 2 implies that the real a is non-constructible. Hence, in Llal], a is a
non-constructible I13 singleton. (See Theorem B of [1] for a yet sharper result
along this line.)

Now let a be as above and s = O%, the hyperjump of a. That is to say, s is
the set of notations of constructive ordinals relative to a. (See Chapter I of [4].
If you are not familiar with theory of hyperarithmetic hierarchy, you can use
here the set {e € w: {e}* € WO} instead of O®.) Since every ordinal below
RE s recursive-in-a, we have RF < w§ < wi. In L[a], on the other hand, s is a
I13 singleton for, in L|a],

r=s5 <= (W)|y ={eo}” = o(y)& 2z =0"],

where ¢eg is a universal Godel number which retrieves y from OY. Thus in the
Jensen-Solovay model, there is a II3 singleton s such that RF is a recursive-in- s
ordinal:

Theorem 2 There is a model of ZFC in which 0f does not exist while every I13
set of reals is Lebesgue measurable and every positive-measure 1% set contains
AL members.

In this model, however, exists a Al real r such that there exists a non-
measurable II3(r) set. Can we somehow multiply the Solovay-Jensen method
to obtain an L-generic model of: For every realr every I1}(r) set is Lebesgue
measurable and if it has positive measure then it contains AL(r) members?

Our hypothesis of Theorem 1 “NF is a recursive-in-s ordinal” seems quite
essential, for otherwise WO(R¥) is not a $1(s) set. We do not know whether
this hypothesis can be weakened to “every ordinal below R¥ is recursive in s,”
or equivalently, “every constructible real is Al(s).” Let us note here that this
condition is strictly weaker than the one in Theorem 1:

Theorem 3 There is a real s € 2% in which every constructible realis recursive
whereas XY is not a recursive-in-s ordinal.

Proof. A model M = (M, €ps) of set theory is called an w-model if all M-
integers are standard. Let us say an w-model M to be nice if M = w and the
natural sequence ((n)™ : n € w) of the M-integers is recursive in the real
world. Every countable w-model has an isomorphic copy which is nice.

Let a C w be a real such that X% = w§. Then let ¥ be the set of reals r € 2%
which codes the €-relation of a non-wellfounded nice w-model of KP set theory
in which an instance of a exists. Then ¥ is a non-empty X1(a) set. Therefore
by the Gandy Basis Theorem (see, [4] Chap.III, 1.5), there is an s € ¥ such
that wi{™* = we = RE,

Let M be the model coded by s. Since M contais an instance of a, it follows
that w§ < w§. Hence w{ = R, Each non-standard ordinal in M has order type
w§ x (1 + OrderType(Q,<)) + p for some p < wj. Therefore for each ordinal
§ < wf the set L is isomorphic to an initial part of the constructible hierarchy



in M. It follows that M contains instances of all sets in Lyr. From this it
follows that every constructible real is recursive in s. O
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