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Abstract

We give aweak basisresultforΠ 1
2 setsof positive measure,which isclosely

related to our previous paper [2] in which we have assumed the existence
of 0].

This note is devoted to the following

Theorem 1 Let s ∈ 2ω be a real such that ℵL
1 is a recursive-in-s ordinal. Then

every Π1
2 set of positive measure contains a ∆1

1(s) member.

This theorem is closely related to the maintheorem of our previous paper [2]:
if 0] exists, then every Π1

2 set of positive measure contains a member which
is arithmetical in 0]. Indeed, letting s = 0] the hypothesis of our present
theorem is achieved andthis almost (but not literally) proves our older theorem.
The hypothesis in the present result is weaker than that of the “0] version.”
Therefore, it seems to be applicable to wider context — See Section 3 for some
discussion on L-generic models in which there is a Π1

2 singleton s satisfying the
hypothesis of Theorem 1.

1 Tools

Let us fix, once for all, a recursive bijection between ω × ω and ω. By the
notation 〈i,j 〉 we mean both the ordered pair and the integer which is assigned
to this ordered pair by the fixed bijection. Each real r ∈ 2ω codes a binary
relation ≤r defined as

i ≤r j ⇐⇒ r(〈i,j 〉) = 1

Let WO be the set of reals r ∈ 2ω such that ≤r well-orders ω. For r ∈ WO,
let ‖r‖ be the order-type of the wellordering ≤r. A countable ordinal ξ is said
to be recursive-in-a if ξ = ‖r‖ for some real r ∈ WO which is recursive in a.

The smallest ordinal which is not recursive-in-a is denoted by ωa
1 . Then

ωa
1 equals the smallest ordinal ξ > ω such that the structure (Lξ(a), ∈,a ) is

admissible. A real x is hyperarithmetical in a if and only if it is ∆1
1(a) if and

only if it belongs to Lωa
1
(a).
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For a countable ordinal ξ let WO(ξ) be the set of r ∈ WO with ‖r‖ < ξ.
For each countable ξ, the set WO(ξ) is Borel. Indeed we have:

Lemma 1.1 Let s ∈ 2ω. Let ξ be a recursive-in-s ordinal. Then WO(ξ) is a
∆1

1(s) set.

Proof. Let r ∈ WO be a real which is recursive in s and satisfies ξ = ‖r‖.
Then a real x belongs to WO(ξ) if and only if there is an order-preserving
mapping of (ω, ≤x) into an initial segment of (ω, ≤r), if and only if x ∈ WO
and there is no order-preserving mapping of (ω, ≤r) into (ω, ≤x). This gives a
∆1

1(r) characterization of WO(ξ). ¤
Let s ∈ 2ω be a real such that ℵL

1 is a recursive-in- s ordinal. This readily
implies ℵL

1 is countable. Under this assumption, every Π1
2 set of reals is Lebesgue

measurable. The main theorem is proved by examining how this measurability
is realized in a certain effective way. To this end, we need two ∆1

1(s) sets:
Lemma 1.1 implies that the set WO(ℵL

1 ) of codes of constructibly countable
well-ordering is ∆1

1(s). Next we see that there is a ∆1
1(s) set C of measure one

consisting of random reals over L.
For a real t ∈ 2ω and an integer n ∈ ω, let (t)n be the real defined by:

(t)n(i) = t(〈n,i 〉). Each real codes a countable sequence of reals in this way.

Lemma 1.2 There is a ∆1
1(s) real t such that

{ (t)n : n ∈ ω } = 2ω ∩ L.

Proof. For 2ω ∩L = 2ω∩LℵL
1
, this set belongs to Lωs

1
[s], the smallest admissible

set containing s. Since Lωs
1
[s] models “every set is countable,” there exists in it

a surjection f : ω ³ 2ω ∩ LℵL
1
. Let t(〈n,i 〉) = f (n)(i). ¤

Let U ⊂ 2ω × 2ω be a Π0
2 set which is universal for Π0

2. Let t be a real as in
Lemma 1.2. Let C ⊂ 2ω be the following set

C ={ x ∈ 2ω : (∀y ∈ 2ω ∩ L)[µ(Uy) = 0 =⇒ x /∈ Uy ] }
={x ∈ 2ω : (∀n)[ µ(U(t)n

) = 0 =⇒ x /∈ U(t)n
] }.

where µ denotes the Lebesgue measure. Then C is a ∆1
1(s) set suchthat µ(C) =

1.

Lemma 1.3 Every x ∈ C is random over L. Consequently the equality ℵL[x]
1 =

ℵL
1 holds for all x ∈ C. ¤

2 Reducing Π1
2 sets to Π1

1(s)
Let P be a Σ1

2 set of reals, then there is a recursive function f : 2ω × 2ω → 2ω

such that
x ∈ P ⇐⇒ (∃y)[ f(x,y ) ∈ WO ].
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By the Shoenfield Absoluteness Lemma, it is equivalent to say

x ∈ P ⇐⇒ (∃y ∈ 2ω ∩ L[x])[ f(x,y ) ∈ WO ].

In such a case, we have f(x,y ) ∈ L[x]. So ‖f(x,y )‖ < ℵL[x]
1 . It follows that

x ∈ P ⇐⇒ (∃y ∈ 2ω ∩ L[x])[ f (x,y ) ∈ WO(ℵL[x]
1 )] .

By these observations, we have:

Lemma 2.1 Let P be a Σ1
2 set of reals, then there is a recursive function f :

2ω × 2ω → 2ω such that

x ∈ P ⇐⇒ (∃y)[ f(x,y ) ∈ WO(ℵL[x]
1 )] .

Now let A be a Π1
2 set of reals. Put P = 2ω \A, then by Lemmas 1.3 and 2.1,

there is a recursive fucntion f : 2ω × 2ω → 2ω such that

x ∈ C =⇒ [ x ∈ A ⇐⇒ (∀y)[ f (x,y ) /∈ WO(ℵL
1 )]] .

Therefore we have

Lemma 2.2 Let A and f as above. Then

A ∩ C = {x ∈ 2ω : x ∈ C & (∀y)[ f (x,y ) /∈ WO(ℵL
1 )] }.

Consequently, A ∩ C is a Π1
1(s) set.

If A has positive Lebesgue measure, so is A ∩ C, for C contains almost all
reals. Being a Π1

1(s) set of positive measure, A ∩ C contains a ∆1
1(s) real by

the Sacks-Tanaka Basis Theorem ([4], Chap.IV, 2.2). Thus we have proved the
main theorem.

3 Some remarks

Theorem 1 would be of no insterst unless there exists a definable real which
makes ℵL

1 countable. The simplest way to make ℵL
1 countable is to add to L

a generic function on ω onto ℵL
1 by forcing with finite partial functions. This

forcing adds no ordinal-definable reals. Hence in the generic extension the non-
constructible reals form a Π1

2 sets of positive measure which does not contain
any ordinal-definable real.

Much finer method to force ℵL
1 countable have been invented by Jensen and

Solovay. In [3] they give a forcing notion P ∈ L and a Π1
2 formula ϕ such that

if G ⊂ P is generic then there exists a real a ∈ V [G] such that

1. L[a] |= (∀x ⊂ ω)[ϕ(x) ⇐⇒ x = a ];

2. every constructible real is recursive in a.
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Clause 2 implies that the real a is non-constructible. Hence, in L[a], a is a
non-constructible Π1

2 singleton. (See Theorem B of [1] for a yet sharper result
along this line.)

Now let a be as above and s = Oa, the hyperjump of a. That is to say, s is
the set of notations of constructive ordinals relative to a. (See Chapter I of [4].
If you are not familiar with theory of hyperarithmetic hierarchy, you can use
here the set { e ∈ ω : {e}a ∈ WO} instead of Oa.) Since every ordinal below
ℵL

1 is recursive-in-a, we have ℵL
1 ≤ ωa

1 < ωs
1. In L[a], on the other hand, s is a

Π1
2 singleton for, in L[a],

x = s ⇐⇒ (∀y)[y = {e0}x =⇒ ϕ(y)& x = Oy ],

where e0 is a universal Gödel number which retrieves y from Oy. Thus in the
Jensen-Solovay model, there is a Π1

2 singleton s such that ℵL
1 is a recursive-in-s

ordinal:

Theorem 2 There is a model of ZFC in which 0] does not exist while every Π1
2

set of reals is Lebesgue measurable and every positive-measure Π1
2 set contains

∆1
3 members.

In this model, however, exists a ∆1
3 real r such that there exists a non-

measurable Π1
2(r) set. Can we somehow multiply the Solovay-Jensen method

to obtain an L-generic model of: For every real r every Π1
2(r) set is Lebesgue

measurable and if it has positive measure then it contains ∆1
3(r) members?

Our hypothesis of Theorem 1 “ℵL
1 is a recursive-in-s ordinal” seems quite

essential, for otherwise WO(ℵL
1 ) is not a Σ1

1(s) set. We do not know whether
this hypothesis can be weakened to “every ordinal below ℵL

1 is recursive in s,”
or equivalently, “every constructible real is ∆1

1(s).” Let us note here that this
condition is strictly weaker than the one in Theorem 1:

Theorem 3 There is a real s ∈ 2ω in which every constructible real is recursive
whereas ℵL

1 is not a recursive-in-s ordinal.

Proof. A model M = (M, ∈M ) of set theory is called an ω-model if all M-
integers are standard. Let us say an ω-model M to be nice if M = ω and the
natural sequence 〈 (n)M : n ∈ ω 〉 of the M-integers is recursive in the real
world. Every countable ω-model has an isomorphic copy which is nice.

Let a ⊂ ω be a real such that ℵL
1 = ωa

1 . Then let Ψ be the set of reals r ∈ 2ω

which codes the ∈-relation of a non-wellfounded nice ω-model of KP set theory
in which an instance of a exists. Then Ψ is a non-empty Σ1

1(a) set. Therefore
by the Gandy Basis Theorem (see, [4] Chap.III, 1.5), there is an s ∈ Ψ such
that ω

〈a,s〉
1 = ωa

1 = ℵL
1 .

Let M be the model coded by s. Since M contais an instance of a, it follows
that ωa

1 ≤ ωs
1. Hence ωs

1 = ℵL
1 . Each non-standard ordinal in M has order type

ωs
1 × (1 + OrderType(Q,<)) + ρ for some ρ < ωs

1. Therefore for each ordinal
ξ < ωs

1 the set Lξ is isomorphic to an initial part of the constructible hierarchy
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in M . It follows that M contains instances of all sets in LℵL
1
. From this it

follows that every constructible real is recursive in s. ¤
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