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Abstract. Using the covering game, we prove that every (lightface) Π1
2-set of

positive Lebesgue measure contains a member which is arithmetical in 0]. This
result generalizes a result for Π1

1 due to Sacks and Tanaka.

1. Introduction.

The Sacks-Tanaka Theorem ([7],[9]) says that if a Π1
1-set of real numbers has positive

Lebesgue measure then it contains a hyperarithmetical element (Here we are dealing with
lightface Π1

1-sets.) This theorem a result about basis problems: whether definable sets of
real numbers have definable members. The Sacks-Tanaka theorem was generalized by A.S.
Kechris [2] to all odd levels of analytical hierarchy, under the assumption of determinacy
of all infinite games associated with projective sets. In the present paper, we extend the
Sacks-Tanaka theorem to the lowest even level of analytical hierarchy, namely to (lightface)
Π1

2.

Theorem. Assume 0] exists. Then every Π1
2-set of real numbers with positive

Lebesgue measure has a member which is arithmetical in 0].

We prove this theorem by applying covering games. This kind of games has been used
in order to show that determinacy of infinite games implies Lebesgue measurability and
other regularity properties of pointsets. For general information about games and their
role in descriptive set theory, see Moschovakis’ textbook [4] or Martin and Kechris’ survey
paper [3]. In Section 2, we introduce covering games. Then we prove a few lemmas which
we need. The proof of main theorem is given in Section 3, where we also give some remarks
about the result.

2. Covering games.

Let C be the Cantor space, i.e. the set {0, 1}ω topologized with the product topology,
taking {0, 1} discrete. Let {Jn}n∈ω enumerate, in a straightforward way, the basic clopen
sets in C. Let {Gk}k∈ω recursively enumerate all the finite unions of Jn’s.

We give the standard product measure on C. In what follows, this product measure
is called the Lebesgue measure. This abuse of language would cause little confusion, since
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the Cantor space C and the unit interval [0, 1] are measure theoretically quite similar. In
fact, removing an appropriate countable set (i.e., the sequences of 0’s and 1’s having only
finitely many places for 1) from C, we obtain a measure space which is (arithmetically)
isomorphic to [0, 1]. For this reason, we also call elements of C reals.

Let us denote by m, m∗ and m∗ respectively, the Lebesgue measure, its inner and outer
extensions respectively. We may assume, without loss of generality, that the enumeration
{Jn} and {Gk} have been made so that the relations m(Jn) < p/(q+1), m(Gk) < p/(q+1)
and similar relations with “>” replacing “<” are all recursive (for n, k, p, q in ω).

Let E ⊂ C ×C . The projection of E onto the first coordinate space is denoted by πE :

πE = { α ∈ C : (∃β ∈ C)[ 〈α,β 〉 ∈ E ] }.

Covering games have been introduced by L. Harrington in order to give a simpler proof
of a theorem of J. Mycielski and S. Swierczkowski ([5]) that the Axiom of Determinacy
implies every set of real numbers is Lebesgue measurable. The game which we are going to
describe is so-called “unfolded version” of covering game. This version has been invented
by R. M. Solovay and A. S. Kechris.

Let E ⊂ C×C . Let P = πE . Given a rational number ε > 0, we consider the following
two-person infinite game:

(I) a0,b 0 a1,b 1 ···
↘ ↗ ↘ ↗

(II) k0 k1 ···

where ai,b i ∈ {0, 1} and ki ∈ ω. We impose the following restriction on Player II’s choices:
ki must satisfy m(Gki) < ε/8i for all i ∈ ω. A course of choices of Player I specifies a pair
of reals

α = (a0,a 1,...,a i,... )

and
β = (b0,b1,...,b i,... )

while Player II specifies an open subset G of C:

G = Gk0 ∪ Gk1 ∪ ··· ∪ Gki ∪ ··· .

Player I wins if 〈α,β 〉 ∈ E and α 6∈ G. Otherwise Player II wins. We call this game the
unfolded covering game associated with E and ε and denote it by G+(E : ε). The measure
of P and winning strategies in G+(E : ε) are related to each other as the next lemma
shows.

Lemma 1. Let E ⊂ C × C. Let ε > 0 be rational. Let P = πE. Consider the game
G+(E : ε).

(1) If Player I has a winning strategy, then m∗(P ) ≥ ε.
(2) If Player II has a winning strategy, then m∗(P ) < 8ε.
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Proof: (1) Suppose that Player I has a winning strategy σ in G+(E : ε). Let S be the
set of courses of legal moves of Player II:

S = { γ ∈ ωω : (∀i)[m(Gγ(i)) < ε/8i ] }.

Let H be the set of pair of reals which Player I specifies by playing according to σ while
Player II plays legally:

H = {〈α,β 〉 ∈ C × C : (∃γ ∈ S)(∀i)[ 〈α(i),β (i)〉 = σ(γ(0),...,γ (i − 1))]}

Let Q = πH . It is easy to see that S is closed (in fact, lightface Π0
1) and H and Q are Σ1

1.
For σ is a winning strategy of Player I, we have H ⊂ E. Therefore Q ⊂ P . Being Σ1

1, Q
is Lebesgue measurable. Therefore, in order to prove m∗(P ) ≥ ε, it is sufficient to show
m(Q) ≥ ε.

Suppose contrary, that m(Q) < ε. Then there exists a sequence {np}p∈ω of integers
such that

Q ⊂
⋃

p∈ω

Jnp and
∑

p∈ω

m(Jnp) < ε.

For each i ∈ ω let ui be the smallest integer u such that

∑

p≥u

m(Jnp) <
ε

8i
.

Let γ(i) = ki be an index of the finite sum

Gki =
⋃

{ Jnp : ui ≤ p < ui+1 }

Then γ is a course of legal choices of Player II in G+(E : ε) which defeats σ. Contradiction.
(2) Suppose that τ is a winning strategy of Player II in G+(E : ε). Let D be the union

of all open sets Gk which τ tells Player II to choose against Player I’s choices:

D =
⋃

{ Gτ(a0,b0,...,a i,bi) : a0,...,a i,b 0,...,b i ∈ {0, 1}, i ∈ ω }.

Straightforward computation shows m(D) < 8ε. Since τ is winning of Player II, we have
P ⊂ D. (QED)

From the proof of Lemma 1, we can extract the following effective version. Note that
we are dealing with relativized lightface pointclasses.

Lemma 2. Let E ⊂ C × C. Let ε > 0 be rational. Let P = πE. Consider the game
G+(E : ε).
(1) If Player I has a winning strategy σ, then P contains a Σ1

1(σ)-set Q whose Lebesgue
measure is not less than ε.

(2) If Player II has a winning strategy τ , then P is contained in a Σ0
1(τ )-set D whose

Lebesgue measure is less than 8ε.
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We need the following lightface version of the result of Mycielski and Swierczkowski.

Lemma 3. Let Γ be an adequate pointclass. Suppose that the game G+(E : ε) is
determined for all E ⊂ C × C in Γ and for every rational ε > 0. Then every ∃CΓ-set in C
is Lebesgue measurable.
Proof: Suppose that a Lebesgue non-measurable set P ⊂ C in ∃CΓ exists. Let Bi and
Bo be Borel sets such that Bi ⊂ P ⊂ Bo, m(Bi) = m∗(P ) and m(Bo) = m∗(A). Then
m(Bo \ Bi) > 0. By the Lebesgue density theorem, there exists a finite binary sequence s
such that for the corresponding basic clopen set Ns = { α ∈ C : α ⊃ s } we have

m(Ns ∩ (Bo \ Bi)) >
8
9
m(Ns).

From this it follows that
m∗(Ns ∩ P ) <

1
9
m(Ns)

and
m∗(Ns ∩ P ) >

8
9
m(Ns).

Let P ′ = { α ∈ C : s _ α ∈ P }. This set belongs to ∃CΓ since this pointclass is closed
under recursive substitutions. By the inequalities above, we have m∗(P ′) < 1/9 and
m∗(P ′) > 8/9. Let E ⊂ C × C be a Γ-set such that P ′ = πE . Then by Lemma 1, neither
player has a winning strategy in G+(E : 1/9). (QED)

Finally, we see how 0] is related to existence of definable winning strategy. It is well-
known that Π1

1-Determinacy is equivalent to the existence of 0]. See [1] and Chapter 7 of
[6] for the detail. From D. A. Martin’s proof of Π1

1-Determinacy from 0], we obtain the
following

Lemma 4. Assume 0] exists. For every Π1
1-game, either Player I has a winning

strategy or Player II has a winning strategy which is recursive in 0].
Proof: We freely use terminology from [4]. Let A ⊂ ωω be a Π1

1-set. Let T be a
recursive tree on ω × ω such that α ∈ A if and only if T (α) is a wellfounded tree. For
each finite sequence s from ω, let T (s) be the set of t ∈ ω<ω such that `h(t) ≤ `h(s) and
〈(s|`h(t)),t〉 ∈ T . Then for every α ∈ ωω, we have T (α) =

⋃
n∈ω T (α|n).

Now we consider two games. The first is the ordinary game on ω with pay-off set
A, for which we are to prove the lemma. Call this game G(A). The second game is
defined as follows: Player I is to choose a2n ∈ and a order preserving function fn on
T (a0,a 1,...,a 2n) (under the Kleene-Brower ordering) into ℵω1 , while Player II is to choose
a2n+1 ∈ ω. Moreover, we impose the following restriction on Player I’s choices: fn+1 must
be an extension of fn. Player I wins if he can make all moves legally. Player II wins
otherwise, i.e., if he can make his opponent impossible to carry on. Call this game G∗(T ).
It is a closed game on a certain uncountable set. Hence by the Gale-Stewart Theorem, it
is determined.

In G∗(T ), two players together specify a sequence α = (a0,a 1,... ). At the same time,
Player I tries to build up an order preserving mapping of T (α) into ℵω1 which witnesses
the wellfoundedness of T (α), hence witnesses α ∈ A.
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If Player I has a winning strategy in G∗(T ), then it can be used in G(A): simply
forget fn’s. This yields a winning strategy of Player I in G(A).

On the other hand, suppose Player II has a winning strategy τ∗ in G∗(T ). We may
assume without loss of generality that τ∗ is definable in the constructible universe L with
only one parameter ℵω1 . In G(A), let Player II play using τ ∗ with fn being the unique
order preserving mapping of T (a0,...,a 2n) into {ℵ 1,..., ℵk } (where k is the cardinality
of T (a0,...,a 2n)). It is easy to check that this is a winning strategy of Player II in G(A),
using the fact that uncountable cardinals form a class of indiscernibles in L under the
existence of 0].

Let us denote this strategy of Player II by τ . Since τ∗ is definable in L, the set-theoretic
sentence τ(a0,...,a 2n) = b can be written by a formula φa0,...,a 2n,b, which depends on
(a0,...,a 2n,b ) in a recursive way, and the cardinals ℵ1,..., ℵk and ℵω1 :

τ(a0,...,a 2n) = b ⇐⇒ L |= φa0,...,a 2n ,b[ℵ1,..., ℵk, ℵω1]

⇐⇒ φa0,...,a2n,b ∈ 0].

Hence τ is recursive in 0]. (QED)

3. Proof of the theorem and some remarks.

We are ready to prove the main theorem. Let A be a Π1
2-set in C of positive Lebesgue

measure. We know that every A is Lebesgue measurable (by Lemma 3). By the density
argument just like the proof of Lemma 3, we may assume without loss of generality that
m(A) > 8/9. Let P = C \ A and let E ⊂ C × C be a Π1

1-set such that P = πE. Consider
the game G+(E : 1/9). This is a Π1

1-game in which (by Lemma 1) Player I does not
have a winning strategy. Then by Lemma 4, Player II has a winning strategy τ which is
recursive in 0]. By Lemma 2, there is a Σ0

1(τ )-set D such that P ⊂ D and m(D) < 1/9.
Let K = C \ D. Then K is a compact Π0

1(τ )-set such that A ⊃ K and m(K) > 8/9. In
particular, K is not empty.

We show how to find a member of K which is arithmetical in τ . Since K is Π0
1(τ),

there exist a set R1 of finite sequences of 0’s and 1’s such that
(1) R1 is recursive in τ ;
(2) if s is an initial segment of some t ∈ R1, then s ∈ R1;
(3) R1 has infinitely many members;
(4) K = { α ∈ C : (∀n)[〈α(0),...,α (n − 1)〉 ∈ R1] }.
Using this set R1, we define a real α1 inductively: let α1(n) = 0 if infinite many sequences
extending 〈α1(0),...,α 1(n − 1), 0〉 are in R1. Otherwise let α1(n) = 1. It is easy to
verify that α1 ∈ K and α1 is arithmetical in τ . Since τ is recursive in 0], the real α1 is
arithmetical in 0]. Thus we have found a member of A which is arithmetical in 0]. (QED)

Remark 1. The condition “with positive Lebesgue measure” cannot be dropped from
the theorem. To see this, let β be a Π1

2-singleton which is not arithmetical in 0] (for
example, the double sharp 0]]). Then let A be the set of α ∈ C in which β is arithmetical.
Then A is a Π1

2-set which has the cardinality of the continuum. Clearly, it does not contain
any member which is arithmetical in 0].

5



(6) A basis theorem for Π1
2

Remark 2. If 0] does not exist, then some Π1
2-set with positive measure may fail to

contain definable members. To see this, let c be a Cohen real over L. Then in L[c], the
set of all non-constructible reals is a Π1

2-set of measure 1 (see Theorem 3.1 of [8]). But it
contains no ordinal-definable reals because HOD = L holds in L[c].

Remark 3. Using unfolded Banach-Mazur games (see 6G.11 of [4]), we can get the
Baire category version of the theorem: if 0] exists, then every non-meager Π1

2-set of reals
contains a real which is arithmetical in 0].
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