Coanalytic sets with Borel sections.

Hiroshi Fujita (Ehime University) March 6, 2009 at Kobe University

Fact. (Fujita and Mátrai) Let $B \subset \mathbf{R} \times \mathbf{R}$ be a Borel set, such that horizontal section B^y is Σ^0_{α} for every $y \in \mathbf{R}$. Then there is dense G_{δ} set $D \subset \mathbf{R}$ such that $B \cap (\mathbf{R} \times D)$ is $\Sigma^0_{\alpha} \upharpoonright (\mathbf{R} \times D)$.

This can be proved by an straightforward induction using A. Louveau's solution of the *section problem* of Borel sets([Lo]). This Fact has been used in order to solve an old question by M. Laczkovich about differences of Borel measurable functions. (See [FM].)

Theorem. The following statements are equivalent:

- (1) If $A \subset \mathbf{R} \times \mathbf{R}$ is Π_1^1 and all the horizontal sections A^y are Borel, then there is a dense G_{δ} set $D \subset \mathbf{R}$ such that $A \cap (\mathbf{R} \times D)$ is Borel;
- (2) similar, but A^y are Π^0_{α} and $A \cap (\mathbf{R} \times D)$ is $\Pi^0_{\alpha} \upharpoonright (\mathbf{R} \times D)$, $(1 \le \alpha < \omega_1)$;
- (3) similar, but A^y are closed and $A \cap (\mathbf{R} \times D)$ is Borel;

(4) BP(Σ_2^1), [i.e., every Σ_2^1 set of reals has the property of Baire.]

PROOF. From (1) to (2): use the Fact.

From (2) to (3): immediate from the case $\alpha = 1$ of (2).

From (3) to (4): given Σ_2^1 set $P \subset \mathbf{R}$, let $A \subset \mathbf{R} \times \mathbf{R}$ be Π_1^1 such that $y \in P \iff \exists x[\langle x, y \rangle \in A]$. Uniformize A by a function $f : P \to \mathbf{R}$ with Π_1^1 graph. Apply (3) to the graph of f. Then $P \cap D$ is Σ_1^1 and D is co-meager. So P has BP.

From (4) to (1): this is the main part of today's talk...

Let \mathbb{C} be the Cohen poset. Let Cohen(M) be the set of all \mathbb{C} -generic reals over the model M.

Lemma A. BP(Σ_2^1) if and only if Cohen(L[r]) is co-meager for every $r \in \mathbf{R}$.

Let WO be the set of $w \in {}^{\omega}2$ which codes a wellordering on ω . For each $w \in WO$ let ||w|| be the order-type (i.e., countable ordinal) that w codes. **Definition.** $X \subset \mathbf{R} \times \omega_1$ is Π_2^1 in the codes if the set

$$\left\{ \langle x, w \rangle \in \mathbf{R} \times {}^{\omega}2 \ \Big| \ w \in \mathrm{WO}, \ \langle x, \|w\| \rangle \in X \right\}$$

is (lightface) Π_2^1 .

Lemma B. Let $X \subset \mathbf{R} \times \omega_1$ be Π_2^1 in the codes. Suppose that for every $y \in \mathbf{R}$ there is $\xi < \omega_1$ such that $\langle y, \xi \rangle \in X$. Then there is a countable δ such that for every $c \in \text{Cohen}(L)$ there is $\xi < \delta$ such that $\langle c, \xi \rangle \in X$.

Proof of (4) \Rightarrow (1) [taking Lemmas for granted]. We put $\mathbf{R} = {}^{\omega}\omega$ and assume A is lightface Π_1^1 . Let $f : \mathbf{R} \times \mathbf{R} \to {}^{\omega}2$ be a recursive function s.t. $A = f^{-1}$ [WO]. Since A^y is Borel, the image $f[A^y \times \{y\}]$ is bounded in WO, that is to say,

$$\forall y \in \mathbf{R} \exists \xi < \omega_1 \forall x \Big[\langle x, y \rangle \in A \implies \|f(x, y)\| < \xi \Big].$$

For each $\xi < \omega_1$ set

$$\operatorname{WO}_{\xi} = \left\{ w \in \operatorname{WO} \mid \|w\| < \xi \right\}$$

and let

$$X = \left\{ \left\langle y, \xi \right\rangle \ \middle| \ f[A^y \times \{y\}] \subset WO_{\xi}. \right\}$$

Obsetve that X is Π_2^1 in the codes. Applying LEMMA B we find $\delta < \omega_1$ such that

$$\forall c \in \operatorname{Cohen}(L) \exists \xi < \delta \left[\left\langle c, \xi \right\rangle \in X \right].$$

Then we have

$$A \cap (\mathbf{R} \times \operatorname{Cohen}(L)) = f^{-1}[\operatorname{WO}_{\delta}] \cap (\mathbf{R} \times \operatorname{Cohen}(L)).$$

By LEMMA A there is a dense G_{δ} set $D \subset Cohen(L)$.

Proof of Lemma B. Let $\varphi(y, w)$ be a Π_1^1 formula such that

$$\begin{aligned} \langle y,\xi\rangle \in X &\iff \exists w \in \mathrm{WO}\Big(\,\xi = \|w\| \wedge \varphi(y,w)\,\Big) \\ &\iff \forall w \in \mathrm{WO}\Big(\,\xi = \|w\| \implies \varphi(y,w).\,\Big) \end{aligned}$$

Then we have, by assumption of the lemma,

(*)
$$\forall y \exists \xi < \omega_1 \forall w \Big(w \in WO \land ||w|| = \xi \implies \varphi(y, w) \Big)$$

let $\varphi^*(y,\xi)$ stand for " $\forall w \cdots$ " part of (*). Then $\varphi^*(y,\xi)$ is absolute for every proper class model in which ξ is countable.

Let $c \in \text{Cohen}(L)$. Suppose that $\langle c, \xi \rangle \in X$. Let $g: \omega \to \xi$ be $\text{Coll}(\xi)$ -generic over L[c]. Then

$$L[c,g] \models \varphi^*(c,\xi)$$

so that there are forcing conditions $p \in \mathbb{C}$ and $q \in \text{Coll}(\xi)$ such that c meets p, g meets q and

$$\langle p,q \rangle \models_{(\mathbb{C} \times \operatorname{Coll}(\xi))} L[\dot{c},\dot{g}] \models \varphi^*(\dot{c},\check{\xi}).$$

Then by absoluteness of forcing relations,

$$L \models \Big(\langle p, q \rangle \Vdash_{(\mathbb{C} \times \operatorname{Coll}(\xi))} \varphi^*(\dot{c}, \check{\xi}) \Big).$$

By homogeneity of the poset $\operatorname{Coll}(\xi)$,

$$L \models \Big(\langle p, \emptyset \rangle \Vdash_{(\mathbb{C} \times \operatorname{Coll}(\xi))} \varphi^*(\dot{c}, \check{\xi}) \Big).$$

where \emptyset is the largest member of $\operatorname{Coll}(\xi)$.

For each $\xi < \omega_1$ let

$$Y_{\xi} = \left\{ p \in \mathbb{C} \mid L \models \left(\langle p, \emptyset \rangle \parallel_{(\mathbb{C} \times \operatorname{Coll}(\xi))} \varphi^{*}(\dot{c}, \check{\xi}) \right) \right\}$$

Then $\bigcup_{\xi < \omega_1} Y_{\xi}$ is pre-dense in \mathbb{C} . By ccc, there is $\delta < \omega_1$ such that $\bigcup_{\xi < \delta} Y_{\xi}$ is already pre-dense in \mathbb{C} .

Daiske Ikegami observed that \mathbb{C} in LEMMA B can be replaced by other ccc forcing notions that is (lightface) Σ_1^1 and strongly arboreal. Daisuke also pointed out that Sacks forcing does not satisfy LEMMA B nor clause (3) of THEOREM.

By Montgomery's result on the category quantifier, we obtain **Corollary.** Assume BP(Σ_2^1). Let $A \subset \mathbb{R} \times \mathbb{R}$ be Π_1^1 such that A^y is Σ_{α}^0 for every $y \in \mathbb{R}$. Then

$$\exists^* A = \left\{ x \in \mathbf{R} \mid A_x \text{ is not meager} \right\}$$

is Σ^0_{α} .

Question. Does this statement imply BP(Σ_2^1)?

References

[FM] H. Fujita and T. Mátrai, On the difference property of Borel measurable functions, submitted (August 2008). Available at authors' websites.

[Lo] A. Louveau, A separation theorem for Σ_1^1 , Trans. Amer. Math. Soc. 260 (1980), 363–378.