Coanalytic sets with Borel sections.

Hiroshi Fujita (Ehime University)
March 6, 2009
at Kobe University
Fact. (Fujita and Mátrai) Let $B \subset \boldsymbol{R} \times \boldsymbol{R}$ be a Borel set, such that horizontal section B^{y} is $\boldsymbol{\Sigma}_{\alpha}^{0}$ for every $y \in \boldsymbol{R}$. Then there is dense G_{δ} set $D \subset \boldsymbol{R}$ such that $B \cap(\boldsymbol{R} \times D)$ is $\boldsymbol{\Sigma}_{\alpha}^{0} \upharpoonright(\boldsymbol{R} \times D)$.

This can be proved by an straightforward induction using A. Louveau's solution of the section problem of Borel sets([L0]). This Fact has been used in order to solve an old question by M. Laczkovich about differences of Borel measurable functions. (See [FM].)

Theorem. The following statements are equivalent:
(1) If $A \subset \boldsymbol{R} \times \boldsymbol{R}$ is $\boldsymbol{\Pi}_{1}^{1}$ and all the horizontal sections A^{y} are Borel, then there is a dense G_{δ} set $D \subset \boldsymbol{R}$ such that $A \cap(\boldsymbol{R} \times D)$ is Borel;
(2) similar, but A^{y} are $\boldsymbol{\Pi}_{\alpha}^{0}$ and $A \cap(\boldsymbol{R} \times D)$ is $\boldsymbol{\Pi}_{\alpha}^{0} \upharpoonright(\boldsymbol{R} \times D)$, $\left(1 \leq \alpha<\omega_{1}\right)$;
(3) similar, but A^{y} are closed and $A \cap(\boldsymbol{R} \times D)$ is Borel;
(4) $\operatorname{BP}\left(\boldsymbol{\Sigma}_{2}^{1}\right)$, [i.e., every $\boldsymbol{\Sigma}_{2}^{1}$ set of reals has the property of Baire.]

Proof. From (1) to (2): use the Fact.
From (2) to (3): immediate from the case $\alpha=1$ of (2).
From (3) to (4): given $\boldsymbol{\Sigma}_{2}^{1}$ set $P \subset \boldsymbol{R}$, let $A \subset \boldsymbol{R} \times \boldsymbol{R}$ be $\boldsymbol{\Pi}_{1}^{1}$ such that $y \in P \Longleftrightarrow \exists x[\langle x, y\rangle \in A]$. Uniformize A by a function $f: P \rightarrow \boldsymbol{R}$ with $\boldsymbol{\Pi}_{1}^{1}$ graph. Apply (3) to the graph of f. Then $P \cap D$ is $\boldsymbol{\Sigma}_{1}^{1}$ and D is co-meager. So P has BP.

From (4) to (1): this is the main part of today's talk...
Let \mathbb{C} be the Cohen poset. Let $\operatorname{Cohen}(M)$ be the set of all \mathbb{C}-generic reals over the model M.
Lemma $\mathbf{A} \cdot \operatorname{BP}\left(\boldsymbol{\Sigma}_{2}^{1}\right)$ if and only if $\operatorname{Cohen}(L[r])$ is co-meager for every $r \in \boldsymbol{R}$.
Let WO be the set of $w \in{ }^{\omega} 2$ which codes a wellordering on ω. For each $w \in$ WO let $\|w\|$ be the order-type (i.e., countable ordinal) that w codes.
Definition. $X \subset \boldsymbol{R} \times \omega_{1}$ is Π_{2}^{1} in the codes if the set

$$
\left\{\langle x, w\rangle \in \boldsymbol{R} \times{ }^{\omega_{2}} \mid w \in \mathrm{WO},\langle x,\|w\|\rangle \in X\right\}
$$

is (lightface) Π_{2}^{1}.
Lemma B. Let $X \subset \boldsymbol{R} \times \omega_{1}$ be Π_{2}^{1} in the codes. Suppose that for every $y \in \boldsymbol{R}$ there is $\xi<\omega_{1}$ such that $\langle y, \xi\rangle \in X$. Then there is a countable δ such that for every $c \in \operatorname{Cohen}(L)$ there is $\xi<\delta$ such that $\langle c, \xi\rangle \in X$.

Proof of $\mathbf{(4)} \Rightarrow \mathbf{(1)}$ [taking Lemmas for granted]. We put $\boldsymbol{R}={ }^{\omega} \omega$ and assume A is lightface Π_{1}^{1}. Let $f: \boldsymbol{R} \times \boldsymbol{R} \rightarrow{ }^{\omega} 2$ be a recursive function s.t. $A=f^{-1}$ [WO].

Since A^{y} is Borel, the image $f\left[A^{y} \times\{y\}\right]$ is bounded in WO, that is to say,

$$
\forall y \in \boldsymbol{R} \exists \xi<\omega_{1} \forall x[\langle x, y\rangle \in A \Longrightarrow\|f(x, y)\|<\xi]
$$

For each $\xi<\omega_{1}$ set

$$
\mathrm{WO}_{\xi}=\{w \in \mathrm{WO} \mid\|w\|<\xi\}
$$

and let

$$
X=\left\{\langle y, \xi\rangle \mid f\left[A^{y} \times\{y\}\right] \subset \mathrm{WO}_{\xi \cdot}\right\}
$$

Obsetve that X is Π_{2}^{1} in the codes. Applying Lemma B we find $\delta<\omega_{1}$ such that

$$
\forall c \in \operatorname{Cohen}(L) \exists \xi<\delta[\langle c, \xi\rangle \in X]
$$

Then we have

$$
A \cap(\boldsymbol{R} \times \operatorname{Cohen}(L))=f^{-1}\left[\mathrm{WO}_{\delta}\right] \cap(\boldsymbol{R} \times \operatorname{Cohen}(L))
$$

By Lemma A there is a dense G_{δ} set $D \subset \operatorname{Cohen}(L)$.
Proof of Lemma B. Let $\varphi(y, w)$ be a Π_{1}^{1} formula such that

$$
\begin{aligned}
\langle y, \xi\rangle \in X & \Longleftrightarrow \exists w \in \mathrm{WO}(\xi=\|w\| \wedge \varphi(y, w)) \\
& \Longleftrightarrow \forall w \in \mathrm{WO}(\xi=\|w\| \Longrightarrow \varphi(y, w) .)
\end{aligned}
$$

Then we have, by assumption of the lemma,

$$
\begin{equation*}
\forall y \exists \xi<\omega_{1} \forall w(w \in \mathrm{WO} \wedge\|w\|=\xi \Longrightarrow \varphi(y, w)) \tag{*}
\end{equation*}
$$

let $\varphi^{*}(y, \xi)$ stand for " $\forall w \ldots$ " part of $\left(^{*}\right)$. Then $\varphi^{*}(y, \xi)$ is absolute for every proper class model in which ξ is countable.

Let $c \in \operatorname{Cohen}(L)$. Suppose that $\langle c, \xi\rangle \in X$.
Let $g: \omega \rightarrow \xi$ be $\operatorname{Coll}(\xi)$-generic over $L[c]$. Then

$$
L[c, g] \models \varphi^{*}(c, \xi)
$$

so that there are forcing conditions $p \in \mathbb{C}$ and $q \in \operatorname{Coll}(\xi)$ such that c meets p, g meets q and

$$
\langle p, q\rangle \|_{(\mathbb{C} \times \operatorname{Coll}(\xi))} L[\dot{c}, \dot{g}] \models \varphi^{*}(\dot{c}, \check{\xi})
$$

Then by absoluteness of forcing relations,

$$
L \models\left(\langle p, q\rangle \|_{(\mathbb{C} \times \operatorname{Coll}(\xi))} \varphi^{*}(\dot{c}, \check{\xi})\right) .
$$

By homogeneity of the poset $\operatorname{Coll}(\xi)$,

$$
L \models\left(\langle p, \emptyset\rangle \Vdash_{(\mathbb{C} \times \operatorname{Coll}(\xi))} \varphi^{*}(\dot{c}, \check{\xi})\right) .
$$

where \emptyset is the largest member of $\operatorname{Coll}(\xi)$.
For each $\xi<\omega_{1}$ let

$$
Y_{\xi}=\left\{p \in \mathbb{C} \mid L \models\left(\langle p, \emptyset\rangle \Vdash_{(\mathbb{C} \times \operatorname{Coll}(\xi))} \varphi^{*}(\dot{c}, \check{\xi})\right)\right\} .
$$

Then $\bigcup_{\xi<\omega_{1}} Y_{\xi}$ is pre-dense in \mathbb{C}. By ccc, there is $\delta<\omega_{1}$ such that $\bigcup_{\xi<\delta} Y_{\xi}$ is already pre-dense in \mathbb{C}.

Daiske Ikegami observed that \mathbb{C} in Lemma B can be replaced by other ccc forcing notions that is (lightface) Σ_{1}^{1} and strongly arboreal. Daisuke also pointed out that Sacks forcing does not satisfy Lemma B nor clause (3) of Theorem.

By Montgomery's result on the category quantifier, we obtain
Corollary. Assume $\operatorname{BP}\left(\boldsymbol{\Sigma}_{2}^{1}\right)$. Let $A \subset \boldsymbol{R} \times \boldsymbol{R}$ be $\boldsymbol{\Pi}_{1}^{1}$ such that A^{y} is $\boldsymbol{\Sigma}_{\alpha}^{0}$ for every $y \in \boldsymbol{R}$. Then

$$
\exists^{*} A=\left\{x \in \boldsymbol{R} \mid A_{x} \text { is not meager }\right\}
$$

is $\boldsymbol{\Sigma}_{\alpha}^{0}$.
Question. Does this statement imply $\operatorname{BP}\left(\boldsymbol{\Sigma}_{2}^{1}\right)$?

References

[FM] H. Fujita and T. Mátrai, On the difference property of Borel measurable functions, submitted (August 2008). Available at authors' websites.
[Lo] A. Louveau, A separation theorem for Σ_{1}^{1}, Trans. Amer. Math. Soc. 260 (1980), 363-378.

