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Abstract

If an atomlessly measurable cardinal exists, then the class of
Lebesgue measurable functions, the class of Borel functions, and the
Baire classes of all order have the difference property. This gives a
consistent positive answer to Laczkovich’s Problem 2 posed in [12].
We also give a complete positive answer to Laczkovich’s Problem 3
in [12] concerning Borel functions with Baire-α differences.

1 Introduction

For each real function f : R→ R and each real constant h ∈ R, the differ-

ence function x 7→ f(x + h) − f(x) is denoted by ∆hf . If a class F ⊆ RR

forms a translation invariant vector space over R, then every f ∈ F satisfies

the condition ∀h ∈ R
[
∆hf ∈ F

]
.

If moreover F contains nonzero constant functions then every function

of the form f = g + θ, where g is in F and θ is additive (i.e., θ(x + y) =

θ(x) + θ(y) holds for every x, y ∈ R), satisfies the same condition. The

difference property is the converse of this trivial observation.

Definition 1.1. A class F ⊆ RR of real functions is said to have the

difference property if every function f : R → R satisfying ∀h ∈ R
[
∆hf ∈

F
]

has the form f = g + θ where g ∈ F and θ is additive.
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The notion was invented by N.G. de Bruijn who proved that the class

C(R) of all continuous real functions has the difference property (see [2]).

In fact, various subclasses of C(R), which play important role in classical

analysis, have the difference property: for example, the class of differen-

tiable functions, the class Cr(R) of functions with continuous rth deriva-

tives, the class of real analytic functions, etc. These results are reviewed in

M. Laczkovich’s survey paper [14].

On the other hand, it was pointed out by P. Erdős that the second Baire

class does not have the difference property if we assume the Continuum

Hypothesis (CH). Under CH there exists a set A ⊆ R such that for every

h ∈ R the difference (A + h) \ A is countable and yet A is not Lebesgue

measurable. The characteristic function of such a set A has Baire-2 differ-

ence functions but it is not the sum of a Lebesgue measurable function and

an additive function. Thus the difference property of the class of Lebesgue

measurable functions or the class of Borel functions cannot be established

by the conventional ZFC axioms of set theory.

The consistency of the difference property of the class L of Lebesgue

measurable functions has been established by Laczkovich in [12] and [13].

In [12] Laczkovich proves that L has the weak difference property in the

sense that every function f satisfying ∀h ∈ R
[
∆hf ∈ L

]
is of the form

f = g + θ + S where g ∈ L, θ is additive and S is small, i.e., it satisfies

∆hS(x) = 0 a.e. for every h ∈ R. By this result, the consistency of the dif-

ference property of L is reduced to the problem when is every small function

Lebesgue measurable, which turns out to be a kind of strong Fubini theo-

rem in which the measurability condition on the function of two variables

is considerably relaxed. In [13], such a strong Fubini theorem is shown to

be consistent with ZFC (see Section 5.1 for the precise statement). Walk-

ing along the same line, in Section 3 we will prove the following theorem,

which establishes the difference property of L assuming the existence of an

atomlessly measurable cardinal.

Theorem 1.2. Assume an atomlessly measurable cardinal exists. Then the

class of Lebesgue measurable functions has the difference property.

The above mentioned work of Laczkovich on Lebesgue measurable func-

tions leaves open the consistency of the difference property of Borel func-

tions. In [12], Laczkovich posed the following three problems motivated by

the example of Erdős.

Problem 1. Does the first Baire class B1 have the difference property?

Problem 2. Suppose that ∆hf is Borel for every h ∈ R. Is there a

countable ordinal α such that ∆hf is Baire-α for all h ∈ R?
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Problem 3. Suppose that f is Borel and for ∆hf is Baire-α for every

h ∈ R. Then is f itself Baire-α?

Problem 1 has been solved positively by Laczkovich himself. See [14,

Section 7]. One finds there that some useful subclasses of B1 have the dif-

ference property: approximately continuous functions, derivatives, Darboux

Baire-1 functions, etc.

A counter-example to Problem 2 has been given by R. Filipów and

I. Rec law assuming CH (see [5, Theorem 3.1]). Their use of CH is un-

avoidable, though it can be replaced by a version of the Covering Property

Axioms (see [4, Corollary 5.1.11]). In Section 3 we will prove that the exis-

tence of an atomlessly measurable cardinal excludes such counter-examples;

moreover, an atomlessly measurable cardinal implies that the class of Borel

functions has the difference property.

Theorem 1.3. Assume an atomlessly measurable cardinal exists. Then the

class of Borel functions has the difference property. Moreover, for every

α < ω1, the class of Baire-α functions has the difference property.

In Section 4, we will prove the following result, which provides a complete

positive answer to Problem 3.

Theorem 1.4. Let f : R→ R be a Borel function and let α be a countable

ordinal. Suppose that for every h ∈ R the difference function ∆hf is of

Baire class α. Then f itself is of Baire class α.

Partial answers to Problem 3 were known earlier: Laczkovich in [14,

Section 7 p. 391] proved the statement for every bounded Borel function,

while in [7] the first author solved the problem for every α ≥ ω. Actu-

ally, it is the solution of Laczkovich for bounded functions which give us

the impression that the difference property of the Borel functions should be

consistent. However, our solution of Problem 3 goes in a quite different way

from the approach of Laczkovich in [14] or the first author’s in [7]. We will

use a Baire category argument while previous results used measure theoretic

methods. These three attempts are only loosely related to each other by the

basic observation that questions about the difference property usually re-

duce to appropriate extensions of section results like e.g., the Baire-Namioka

theorem, the Fubini theorem, the Kuratowski-Ulam theorem, etc.

We collect in Section 2 the preliminary results that we need. After

obtaining our main results, in Section 5 we will discuss their possible gen-

eralizations under appropriate set-theoretic assumptions.
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2 Preliminaries

The power set of X is denoted by P(X). The cardinality of the continuum

is denoted by c.

2.1 Sections of sets and functions

Let X and Y be sets and let A ⊆ X × Y be a set of pairs. The vertical

section of A at x ∈ X is the set Ax = {y ∈ Y : 〈x, y〉 ∈ A}. Similarly, the

horizontal section of A at y ∈ Y is the set Ay = {x ∈ X : 〈x, y〉 ∈ A}. For a

function F : X×Y → Z of two variables, we also define the vertical sections

Fx : Y → Z (x ∈ X) and the horizontal sections F y : X → Z (y ∈ Y ) by

Fx(y) = F y(x) = F (x, y) (x ∈ X, y ∈ Y ).

2.2 Basic notions from descriptive set theory

Our reference for basic notions from descriptive set theory is [11]. The αth

additive (resp. multiplicative) class of the Borel hierarchy is denoted by

Σ0
α (resp. Π0

α). In particular, Σ0
1 denotes the class of open sets, Π0

1 the

closed sets, Σ0
2 the Fσ sets, etc. We define the αth ambiguous class by

∆0
α = Σ0

α ∩Π0
α. The class of all Borel sets is denoted by B.

The nth additive (resp. multiplicative) class of the projective hierarchy

is denoted by Σ1
n (resp. Π1

n). Therefore Σ1
1 denotes the class of analytic

sets, Π1
1 the coanalytic sets, etc. We define the nth ambiguous class by

∆1
n = Σ1

n ∩Π1
n.

When we say a set A is in one of the above defined pointclasses, we

assume we know the space which A is a subset of. If we need to specify the

space we are dealing with, we write Σ0
α(X), Π1

n(Y ), etc.

Let X and Y be Polish spaces and let Γ be a pointclass. We say a

function f : X → Y is Γ-measurable if for every open set O ⊆ Y we have

f−1[O] ∈ Γ. Therefore a function is Σ0
1-measurable if and only if it is

continuous. A classical result, due to Lebesgue, says that a function from

a Polish space X to a Polish space Y is of Baire class α if and only if it is

Σ0
α+1-measurable (see e.g. [11, (24.3) Theorem p. 190]).

One can endow every Π0
2 subset of a Polish space with a complete metric

without changing topology; conversely, every completely metrizable subset

of a metric space is Gδ. For the details, we refer to [11, (3.11) Theorem p.

17]
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2.3 Universal measures.

A measure space of the form (Y,P(Y ), µ) (i.e. where µ is defined for every

subset of Y ) is called a universal measure space.

It is fairly easy to construct on any set a universal probability measure

space which is concentrated on a countable set of point masses (a point mass

is a point with nonzero measure.) On the other hand, the existence of a

universal probability measure space without point masses is not provable in

ZFC. The existence of such universal measure is equivalent to the existence

of a real-valued measurable cardinal, which is either two-valued measurable

or atomlessly measurable.

Two-valued measurable cardinals are those cardinals that are usually

called measurable cardinals in conventional terminology of set theory. They

play a central role in the study of large cardinals.

An atomlessly measurable cardinal is an uncountable cardinal κ carry-

ing a universal probability measure space (κ,P(κ), µ) which is κ-additive,

i.e. the union of fewer than κ µ-null sets is µ-null, and atomless, i.e. the

whenever µ(A) > 0 then there is B ⊆ A such that 0 < µ(B) < µ(A). It is

known that any atomlessly measurable cardinal is less than or equal to c.

The abbreviation RVMC stands for the statement there exists an atomlessly

measurable cardinal.

It is known that RVMC is consistent with ZFC if and only if so is the

existence of a two-valued measurable cardinal. For more information about

atomlessly measurable cardinals, including the equiconsistency result, we

refer the reader to [6] and [19].

It is clear from the definition that the smallest cardinal κ such that µ

is not κ-additive is a successor cardinal. Thus we can define add(µ) to be

the largest cardinal κ such that µ is κ-additive. In other words, add(µ) is

the smallest possible size of a family A of µ-null sets such that
⋃
A is not

µ-null.

Lemma 2.1. Every σ-finite universal measure is ω2-additive.

Proof. Since µ is σ-finite, there is a partition (Yn)n<ω of Y such that for

every n < ω, µ(Yn) < ∞. It is enough to verify that µ is ω2-additive on

each Yn separately, so we can assume Y = Yn for some n < ω. We consider

only the non-trivial µ(Y ) > 0 case.

Set κ = add(µ). By definition, there is a family (Yα)α<κ of pairwise

disjoint subsets of Y such that for every α < κ, µ(Yα) = 0 but µ(
⋃
α<κ Yα) >

0. Let I = {A ⊆ κ : µ(
⋃
α∈A Yα) = 0}. Then I is a κ-complete σ-saturated

ideal on κ. So by [9, Lemma 10.14 p. 132], κ cannot be a successor cardinal,

in particular κ > ω1.
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2.4 Product σ-algebras

For a pair of σ-algebras A and B on sets X and Y respectively, let A⊗B be

the σ-algebra on X × Y generated by {A×B : A ∈ A, B ∈ B}. This is the

smallest σ-algebra on X × Y that makes the projections πX : X × Y → X

and πY : X × Y → Y measurable. We call A ⊗ B the product σ-algebra of

A and B.

It is easy to see that for every A ∈ A⊗B and every 〈x, y〉 ∈ X × Y , the

horizontal section Ay and the vertical section Ax are in A and B respectively.

The converse is not true in general:

- The natural ordering relation < on ω1, as a set of pairs, has the prop-

erty that every horizontal section is countable and every vertical sec-

tion is co-countable. So if A is the countable/co-countable algebra on

ω1, all horizontal and vertical sections of < belong to A. However, no

ordering relation belongs to the product A ⊗ A because relations in

A⊗A can never be anti-symmetric.

- If κ > c then P(κ× κ) 6= P(κ)⊗ P(κ) because the diagonal set does

not belong to the right hand side.

However, as an important special case, the following is true.

Lemma 2.2. Let X be a separable metric space and Y be any nonempty set.

Let A ⊆ X × Y . Suppose that there is a countable ordinal α such that for

every y ∈ Y the horizontal section Ay is in Σ0
α(X). Then A ∈ B(X)⊗P(Y ).

Proof. Let first α = 1. Let {Ni : i < ω} be an open basis in X. For every

i < ω, define Bi = {y ∈ Y : Ni ⊆ Ay}. Then it is routine to check that

A =
⋃
i∈ω(Ni ×Bi).

The α > 1 case is a straightforward induction on α.

Note that the converse of Lemma 2.2 is also true. Therefore the assump-

tion Ay ∈ Σ0
α cannot be weakened to Ay ∈ B(X) unless Y is countable.

2.5 The Fubini Theorem

For a pair of σ-finite measure spaces, say (X,A, λ) and (Y,B, µ), the product

measure on (X × Y,A ⊗ B) will be denoted by λ ⊗ µ. We will need the

following versions of the Fubini Theorem (see e.g. [18, 8.8 Theorem p. 164]

or [17, Theorem 1 p. 325, Theorem 2 p. 329]).

Proposition 2.3. (The Fubini Theorem) Let (X,A, λ) and (Y,B, µ) be σ-

finite measure spaces. If a function u : X × Y → R is λ ⊗ µ-integrable

then
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(i) the vertical section function ux : y 7→ u(x, y) is µ-integrable for λ-

almost every x,

(ii) the function x 7→
∫
Y
ux(y)dµ(y) is A-measurable,

(iii)
∫∫

X×Y u(x, y)d(λ⊗ µ)(x, y) =
∫
X

(∫
Y
ux(y)dµ(y)

)
dλ(x) holds;

and similarly for the horizontal sections.

Proposition 2.4. (The Fubini-Tonelli Theorem) Let (X,A, λ) and (Y,B, µ)

be σ-finite measure spaces. Let u : X × Y → R be an A ⊗ B-measurable

function such that at least one of the iterated integrals∫
X

(∫
Y

|ux(y)|dµ(y)

)
dλ(x) and

∫
Y

(∫
X

|uy(x)|dλ(x)

)
dµ(y)

exists. Then u is λ ⊗ µ-integrable and the consequences of Proposition 2.3

follow.

For more on these results we refer the reader to textbooks on integrals,

e.g., Halmos [8, Ch. VII], Taylor [20, Ch. 6] or Yeh [21, §23].

2.6 Category quantifiers

The σ-ideal of meager (i.e., of first category) sets in a topological space X is

denoted by M(X). We often write just M when the space X is clear from

the context.

Let X and Y be Polish spaces. Let A ⊆ X × Y . We define two subsets

∃∗YA and ∀∗YA of X by

∃∗YA = {x ∈ X : Ax /∈M(Y ), }
∀∗YA = {x ∈ X : Y \ Ax ∈M(Y )}.

In Section 4 we will need the following result due to Montgomery (see e.g

[11, (22.22) Exercise p. 174]).

Lemma 2.5. Let X and Y be Polish spaces. Let α be a countable nonzero

ordinal and let B ⊆ X × Y be a Σ0
α(X × Y ) set. Then ∃∗YB is a Σ0

α(X)

set. Similarly, if B is Π0
α(X × Y ), then ∀∗YB is Π0

α(X).

2.7 Borel sets with Σ0
α sections

Let X and Y be Polish spaces. For every countable nonzero ordinal α, let SΣ
α

be the set of Borel sets B ⊆ X×Y such that for every y ∈ Y the horizontal

section By is in Σ0
α(X). Let T Π

0 = {U × B : U ∈ Σ0
1(X), B ∈ B(Y )}. For
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every countable nonzero ordinal α, we define T Σ
α and T Π

α by the following

induction:

T Σ
α =

∨ω

(⋃
β<α

T Π
β

)
, T Π

α = {B ⊆ X × Y : (X × Y ) \B ∈ T Σ
α }

where
∨ω is the closure under countable unions. It is clear that B(X×Y ) =⋃

α<ω1
T Σ
α =

⋃
α<ω1

T Π
α . It is also clear that T Σ

α ⊆ SΣ
α . The following

proposition, a subtle result due to A. Louveau, says the converse is also true

(see [16, Theorem 1 p. 375]).

Proposition 2.6. For every countable nonzero ordinal α, T Σ
α = SΣ

α .

Proposition 2.6 will play an important role in Section 4. We refer to [16,

§3] for more about it.

3 Difference property of Lebesgue measur-

able functions and Borel functions under

RVMC

In this section we prove Theorem 1.2 and Theorem 1.3. These results should

be contrasted with the earlier results mentioned in the introduction showing

that under CH none of the classes between the Baire class 2 and the Lebesgue

measurable functions has difference property.

3.1 Lemmas on measurability of integrals

In order to prove these theorems we need several lemmas asserting the

preservation of the measurability of functions under integration. Our first

lemma is due to Laczkovich and Miller [15, Lemma 6].

Lemma 3.1. Let X be a Polish space and (Y,P(Y ), µ) be a universal prob-

ability measure space. Let α be a countable ordinal. Let F : X × Y → R

be a bounded function such that for every y ∈ Y the horizontal section

F y : x 7→ F (x, y) is of Baire class α. Then the function

x 7→
∫
Y

F (x, y)dµ(y)

is also of Baire class α.

Lemma 3.2. Let X be a Polish space and (Y,P(Y ), µ) be a universal prob-

ability measure space. Let F : X × Y → R be a bounded function such that
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for every y ∈ Y the horizontal section F y : x 7→ F (x, y) is Borel. Then the

function

x 7→
∫
Y

F (x, y)dµ(y)

is Borel.

Proof. For each countable ordinal α, let Yα be the set of y ∈ Y for which

F y is of Baire class α. Then we have Yα ⊆ Yβ (α ≤ β < ω1) and Y =⋃
α<ω1

Yα. It follows that µ(Yα) ≤ µ(Yβ) (α ≤ β < ω1). Since there is no

strictly increasing ω1-sequence of real numbers, there is an α < ω1 such that

µ(Yα) = µ(Yβ) (α ≤ β < ω1).

By Lemma 2.1, µ is ω2-additive. So we have µ(Yα) = µ(Y ) = 1. There-

fore, for every x ∈ X we have∫
Y

F (x, y)dµ(y) =

∫
Yα

F (x, y)dµ(y).

By Lemma 3.1 for the universal probability measure space (Yα,P(Yα), µ),

we get that the function x 7→
∫
Y
F (x, y)dµ(y) is of Baire class α.

Lemma 3.3. Let X be a Polish space and (Y,P(Y ), µ) be a σ-finite uni-

versal measure space. Let F : X × Y → R be such that for every y ∈ Y the

horizontal section F y : X → R is Borel and for every x ∈ X the vertical

section Fx is µ-integrable. Then the function

x 7→
∫
Y

F (x, y)dµ(y)

is Borel.

Proof. Since µ is σ-finite, we can find Yn ⊆ Y with µ(Yn) <∞ (n < ω) such

that Yn ⊆ Ym for n ≤ m and Y =
⋃
n<ω Yn.

For each positive integer N , let

FN(x, y) =


N, if F (x, y) ≥ N,

F (x, y), if −N < F (x, y) < N,

−N, if F (x, y) ≤ −N.

Then FN is bounded and the horizontal section (FN)y is Borel for every

y ∈ Y . Therefore by Lemma 3.2 the function

fN(x) =

∫
YN

FN(x, y)dµ(y)

is Borel. Since the vertical section Fx is µ-integrable for every x ∈ X we

have

lim
N→∞

fN(x) = lim
N→∞

∫
YN

FN(x, y)dµ(y) =

∫
Y

F (x, y)dµ(y).
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So the function x 7→
∫
Y
F (x, y)dµ(y) is the pointwise limit of a sequence of

Borel functions hence it is Borel, as required.

Lemma 3.4. Let X be a Polish space and let λ be a σ-finite Borel measure

on X. Let (Y,P(Y ), µ) be a σ-finite universal measure space. Let F : X ×
Y → R be such that for every y ∈ Y the horizontal section F y : X → R is

λ-measurable in the usual sense and for every x ∈ X the vertical section Fx
is µ-integrable. Then the function

x 7→
∫
Y

F (x, y)dµ(y)

is λ-measurable.

Proof. By Luzin’s Theorem (see e.g. [11, (17.12) Theorem p. 108]), there is a

function G : X×Y → R such that for every y ∈ Y the horizontal section Gy

is Σ0
3-measurable and {x : Gy(x) 6= F y(x)} is λ-null. Then, by Lemma 2.2,

G is B(X) ⊗ P(Y )-measurable. Let E = {〈x, y〉 : G(x, y) 6= F (x, y)}. Let

D ⊆ X×Y be such that Dy is a λ-null Π0
2 set containing Ey (y ∈ Y ). Then

D ∈ B(X)⊗ P(Y ) by Lemma 2.2. So by the Fubini Theorem we have

(λ⊗ µ)(D) =

∫∫
X×Y

χD(x, y)d(λ⊗ µ)(x, y)

=

∫
Y

(∫
X

χD(x, y)dλ(x)

)
dµ(y)

=

∫
Y

λ(Dy)dµ(y)

= 0.

From this it follows that µ({y : Fx(y) 6= Gx(y)}) = 0 for λ-almost every x.

So for λ-almost every x, the section Gx is µ-integrable and∫
Y

F (x, y)dµ(y) =

∫
Y

G(x, y)dµ(y).

By Lemma 3.3 the function x 7→
∫
Y
G(x, y)dµ(y) is Borel. Therefore the

function x 7→
∫
Y
F (x, y)dµ(y) is λ-measurable, as required.

3.2 Proof of Theorem 1.2.

Let f : R → R be a function such that the difference function ∆hf is

Lebesgue measurable for every h ∈ R. By a result of Laczkovich [12, The-

orem 3], f = g + θ + S with a Lebesgue measurable g, an additive θ,

and a function S such that for every h ∈ R the set {x : ∆hS(x) 6= 0} is

Lebesgue null. Therefore it is sufficient to show that every such a function

S is Lebesgue measurable.
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Let κ be an atomlessly measurable cardinal. Then κ ≤ c and the

Lebesgue measure λ can be extended to a κ-additive universal measure

(see [6, Theorem 1D(e)], [19], or [10, Section 2] for the details). So let µ be

a κ-additive universal measure on R that extends the Lebesgue measure.

Let F (x, y) = S(x+y)−S(x)−S(y). Then for every y we have F y(x) =

−S(y) for λ-almost every x. Similarly, for every x we have Fx(y) = −S(x)

for µ-almost every y. In particular, Fx|[0,1] is µ-integrable for every x ∈ R.

By Lemma 3.4 we have

x 7→
∫

[0,1]

F (x, y)dµ(y) = −S(x)

is λ-measurable, i.e., Lebesgue measurable. Therefore S is Lebesgue mea-

surable, as required.

3.3 Proof of Theorem 1.3.

Let f : R→ R be a function such that the difference functions ∆hf are Borel

for every h ∈ R. By Theorem 1.2, f = g + θ with Lebesgue measurable g

and additive θ. Let ϕ : R → R be a Borel function such that g(x) = ϕ(x)

for almost every x. Let S = g − ϕ. Then for every h ∈ R, ∆hS is a Borel

function and ∆hS(x) = 0 for almost every x.

In order to show that every such a function S is Borel, we proceed as

in the proof of Theorem 1.2 but this time we apply Lemma 3.3 rather than

Lemma 3.4.

The difference property for the Baire class α functions follows from the

difference property of the Borel functions through Theorem 1.4.

4 Borel functions with Baire α differences

This section is devoted to the proof of Theorem 1.4, which gives an affirma-

tive answer to [12, Problem 3] of M. Laczkovich.

As we have mentioned in the Introduction, unlike the results of Section

3 which use measure theory conceptually as well as technically, the proof we

present in this section for Theorem 1.4 uses only Baire category. However, at

the end of this section we sketch an alternative proof for Theorem 1.4 which

is of measure theoretic nature. We will discuss the interplay of different

proofs with possible consistent generalizations of our results in Section 5.

We will need the following folklore lemma. For every x ∈ R and ε > 0,

let B(x, ε) = {y ∈ R : |y − x| < ε}.
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Lemma 4.1. Let X be a Polish space and let f : X → R be a Baire mea-

surable function. Then there exists a comeager Π0
2(X) set G and a function

g : X → R of Baire class 1 such that f |G = g|G.

Proof. By Nikodým’s Theorem (see e.g. [11, (8.38) Theorem p. 52]), there

exists a comeager Π0
2(X) set G such that f |G is continuous. We define

h : X → R ∪ {±∞} by

h(x) = lim
ε→+0

(
inf{f(y) : y ∈ B(x, ε) ∩G}

)
(x ∈ X).

By the continuity of f |G, h|G = f |G. For every c ∈ R the set {x ∈ X : h(x) >

c} is open. From this it follows that h is a function of Baire class 1 and the set

h−1({±∞}) is Π0
2(X). Since h−1({±∞}) and G are disjoint Π0

2 sets, by the

separation principle there exists a ∆0
2(X) set D such that h−1({±∞}) ⊆ D

and G ∩D = ∅. We define g : X → R by

g(x) =

{
h(x) if x ∈ X \D;

0 if x ∈ D.

Then g is a function of Baire class 1 and g|G = f |G, as required.

Our main lemma is the following. For every topological space Y and

A ⊆ Y , clY (A) denotes the closure of A.

Lemma 4.2. Let X and Y be Polish spaces. Let α be a countable nonzero

ordinal. Let B ⊆ X × Y be a Borel set such that the horizontal section By

is in Σ0
α(X) for every y ∈ Y . Then there is a comeager Π0

2(Y ) set G such

that B ∩ (X ×G) is in Σ0
α(X ×G).

Proof. First we show that for every set A ⊆ Y with the Baire property, there

is a comeager Π0
2(Y ) set G(A) such that A ∩ G(A) is relatively clopen in

G(A). By [11, (8.23) Proposition p. 47], for every A with the Baire property

there is an open set O(A) ⊆ Y such that (A\O(A))∪ (O(A)\A) is meager.

Let E(A) be a meager Σ0
2(Y ) set containing the meager sets (A \ O(A)),

(O(A) \A) and clY (O(A)) \O(A). Let G(A) = Y \ E(A); we show that this

definition fulfills the requirements.

It is immediate that G(A) is a comeager Π0
2(Y ) set. By A = (A∩O(A))∪

(A \ O(A)) we have

A ∩ G(A) = A \ E(A) = A ∩ O(A) \ E(A) = O(A) \ E(A) = O(A) ∩ G(A);

i.e. A ∩ G(A) is relatively open in G(A). Similarly,

A ∩ G(A) = O(A) \ E(A) = clY (O(A)) \ E(A) = clY (O(A)) ∩ G(A);
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thus A ∩ G(A) is relatively closed in G(A), as required.

We prove the lemma by induction on α. For α = 1, B is a Borel set

with open sections. So by Proposition 2.6, there are open sets U(n) ⊆ X

and Borel sets B(n) ⊆ Y such that B =
⋃
n<ω(U(n) × B(n)). Let G =⋂

n<ω G(B(n)). Since B(n) ∩ G(B(n)) is clopen in G(B(n)), B(n) ∩ G is

clopen in G. It follows that (U(n)×B(n))∩ (X ×G) is open in X ×G. So

B ∩ (X ×G) =
⋃
n<ω(U(n)×B(n))∩ (X ×G) is also open in X ×G. This

completes the proof of the α = 1 case.

Let now 1 < α < ω1 and suppose the statement holds for every β < α.

Let B ⊆ X × Y be a Borel set of which the section By is in Σ0
α(X) for

every y ∈ Y . By Proposition 2.6, there are Borel sets B(n) ⊆ X × Y

and ordinals αn < α such that B =
⋃
n<ω B(n) and for every n < ω and

every y ∈ Y the section (B(n))y is in Π0
αn(X). By applying the induction

hypothesis to Y \ B(n) (n < ω), we have comeager Π0
2(Y ) sets G(n) such

that B(n)∩ (X ×G(n)) is in Π0
αn(X ×G(n)). Then G =

⋂
n<ω G(n) fulfills

the requirements.

An important corollary of Lemma 4.2 is the next lemma.

Lemma 4.3. Let X and Y be Polish spaces and α be a countable nonzero

ordinal. Let B ⊆ X × Y be a Borel set such that the horizontal section By

is in Σ0
α(X) for every y ∈ Y . Then ∃∗YB is a Σ0

α(X) set.

Proof. By Lemma 4.2 there is a comeager Π0
2(Y ) set G such that B∩(X×G)

is in Σ0
α(X ×G). We have ∃∗YB = ∃∗G(B ∩ (X ×G)) since G is comeager.

By Lemma 2.5, the right hand side is a Σ0
α(X) set, as required.

4.1 Proof of Theorem 1.4

For α = 0, i.e., for continuous functions, the result is due to de Bruijn (see

[2] or [14]). So we can assume α ≥ 1.

Let f satisfy the conditions of Theorem 1.4. By Lemma 4.1 there is a

Baire class 1 function g : R→ R such that {x ∈ R : f(x) 6= g(x)} is meager.

Set n = f − g. Then it is enough to see that the Borel function n is of Baire

class α. By [11, (24.3) Theorem p. 190], it is sufficient to show that for every

open set U ⊆ R the inverse image n−1(U) is in Σ0
α+1(R).

We define F : R×R→ R by F (x, y) = −n(x+ y) +n(x) +n(y) and set

B = F−1(U). For every y ∈ R the section F y = n(y)−∆yn is of Baire class

α. So by Lebesgue’s theorem, By = (F y)−1(U) is a Σ0
α+1(R) set. Then by

Lemma 4.3 the set ∃∗RB is a Σ0
α+1(R) set.

Fix an arbitrary x ∈ R. By definition,

Bx = {y ∈ R : − n(x+ y) + n(x) + n(y) ∈ U}.

13



Since both {y : n(x + y) = 0} and {y : n(y) = 0} are comeager, Bx is non-

meager if and only if n(x) ∈ U . Hence n−1(U) = ∃∗RB which is a Σ0
α+1(R)

set. This completes the proof.

To conclude this section, let us briefly indicate how Theorem 1.4 can

be proved using a measure theoretic approach. The counterpart of Lemma

4.1 is the following result, which follows by a straightforward application of

Luzin’s Theorem (see e.g. [11, (17.12) Theorem p. 108]).

Lemma 4.4. Let (X, τ) be a Polish space and let µ be a Borel measure on

X satisfying µ(B(x, r)) <∞ for every x ∈ X and r > 0. Let f : X → R be

a µ-measurable function. Then for every ε > 0 there is a closed set F ⊆ X

and a continuous function g : X → R such that µ(X\F ) < ε and f |F = g|F .

We note that it is not enough to assume that µ is σ-finite and we cannot

achieve µ(X \ F ) = 0 even if we relaxed the condition on g to be merely of

Baire class 1.

The counterpart of Lemma 4.2 is the following result.

Lemma 4.5. Let X and Y be Polish spaces and let µ be a Borel measure on

Y satisfying µ(B(y, r)) < ∞ (y ∈ Y, r > 0). Let α be a countable nonzero

ordinal. Let B ⊆ X × Y be a Borel set such that the horizontal section By

is in Σ0
α(X) for every y ∈ Y . Then for every ε > 0 there is a closed set

F ⊆ Y such that µ(Y \ F ) < ε and B ∩ (X × F ) is in Σ0
α(X × F ).

Proof. By [11, (17.11) Theorem p. 107], for every Borel set A ⊆ Y we have

µ(A) = sup{µ(K) : K ⊆ A, K closed}. So for every Borel set A ⊆ Y and

every ε > 0 there is a closed set G(A) ⊆ Y such that µ(Y \ G(A)) < ε

and A ∩ G(A) is clopen in G(A). Then the rest of the proof is an inductive

argument, as for Lemma 4.2.

The corollary of Lemma 4.5, analogous to Lemma 4.3, follows from a

result of Montgomery (see e.g. [11, (22.25) Exercise p. 175]).

Lemma 4.6. Let X and Y be Polish spaces and let µ be a Borel measure on

Y satisfying µ(B(y, r)) < ∞ (y ∈ Y, r > 0). Let α be a countable nonzero

ordinal and let B ⊆ X×Y be a Borel set such that the horizontal section By

is in Σ0
α(X) for every y ∈ Y . Then for every ε ≥ 0, {x ∈ X : µ(Bx) > ε}

is a Σ0
α(X) set.

Using these lemmas, the proof of Theorem 1.4 using Lebesgue measura-

bility of Borel functions follows as in the Baire category approach above.
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5 Generalizations

5.1 Difference property of Lebesgue measurable func-
tions

Recall that cov(N ) denotes the smallest cardinality of a family of Lebesgue

null sets that covers R; non(N ) is the smallest cardinality of a Lebesgue

non-null set; and non?(N ) is the smallest cardinality κ such that every

Lebesgue non-null set has a Lebesgue non-null subset of cardinality κ (see

[1] for more on cardinal invariants).

It was shown in [13] that the difference property of Lebesgue measurable

functions follows from the cardinal inequality non?(N ) < cov(N ). This

inequality is known to hold in random real models (see [13]). If κ is an

atomlessly measurable cardinal, then we know cov(N ) = κ and non(N ) =

ω1. But we do not know the answer to the following.

Question Is non?(N ) < cov(N ) a consequence of the existence of an

atomlessly measurable cardinal?

We note here that, unlike non(N ), the cardinal non?(N ) is not deter-

mined by the presence of an atomlessly measurable cardinal. If κ is two-

valued measurable and CH holds, then the forcing notion Bκ for adding κ

many random reals forces that κ is atomlessly measurable and non?(N ) =

ω1. On the other hand, if κ is two-valued measurable and MA+¬CH holds,

then Bκ forces that κ is atomlessly measurable and non?(N ) > ω1. However,

as we have mentioned, cov(N ) is forced to be not less than κ. Therefore

it anyway becomes far bigger than non?(N ) which does not exceed the size

of ground model’s continuum. So these two cases do not provide counter-

example to our Question.

Finally, we would like to point out that Lemma 3.2 can be applied to

a problem studied in [15], from which we have adopted Lemma 3.1. The

modified version of [15, Theorem 2] is the following.

Proposition 5.1. Suppose there exists an atomlessly measurable cardinal.

Let f : R2 → R be such that the vertical section fx is approximately contin-

uous and the horizontal section fy is Borel for every x, y ∈ R. Then f is

Borel as a function of two variables.

5.2 Difference property of the Baire classes

Let us recall that by a classical result of N. G. de Bruijn, the class of contin-

uous functions has the difference property, while by a result M. Laczkovich,

the class of Baire class 1 functions has the difference property (see [2] and
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[14]); that is, for α = 0 and α = 1 the conclusion of Theorem 1.4 holds

without any definability assumption on f .

On the other hand, under V = L, there exists an analytic set A ⊆ R

such that both A and R\A are uncountable while (A+t)\A is countable for

every t ∈ R (see [3, Theorem 4.7].) It is known that such an analytic set A

is non-Borel and comeager, thus χA shows that the conclusion of Theorem

1.4 may fail for α = 2 and a ∆1
2-measurable function.

The main lemma of Theorem 1.4, Lemma 4.2 is also optimal in the

following sense.

Proposition 5.2. Assume V = L. Then there is a function f : R→ R of

coanalytic graph such that Graph(f)∩ (B×R) is not Borel for every set B

which is either non-null or non-meager.

Proof. It is well known that under V = L there exists a ∆1
2 set which

is not Lebesgue measurable in any non-null Borel set and does not have

the Baire property in any non-meager Borel set; e.g., the well-ordering <L

∩(ωω × ωω) (see e.g. [9, Corollary 25.28 p. 495]. So let P ⊆ R be such a

∆1
2 set. Then both P and R \ P are projections of Π1

1 sets, i.e. there are

Π1
1 sets A1 ⊆ R× [0, 1) and A2 ⊆ R× [1, 2) such that P = projR(A1) and

R \ P = projR(A2).

Let A = A1∪A2. By [11, (36.15) Theorem p. 306], A can be uniformized

by a Π1
1 set, so we can assume A is the graph of a function f : R → [0, 2).

Therefore for every x ∈ R the vertical section Ax consists of a unique point,

in particular it is closed.

Let B ⊆ R be a set satisfying A ∩ (B × [0, 2)) is Borel. Then P1 =

projR

(
A∩(B×[0, 1))

)
and P2 = projR

(
A∩(B×[1, 2))

)
form a disjoint pair

of analytic sets such that P1 ∪P2 = B and B ∩P = P1; in particular B and

B∩P are both analytic. So if B is non-null then there is a non-null Borel set

B′ ⊆ B such that B′∩P is Lebesgue measurable, a contradiction. Similarly,

if B is non-meager then there is a non-meager Borel set B′ ⊆ B such that

B′ ∩ P has the Baire property, again a contradiction. This completes the

proof.

For the sake of completeness, we point out that for α = 1, Lemma 4.2

holds for coanalytic sets.

Proposition 5.3. Let X and Y be Polish spaces and let A ⊆ X × Y be a

coanalytic set. Suppose for every y ∈ Y the horizontal section Ay is open.

Then there exists a comeager Π0
2(Y ) set G such that A ∩ (X × G) is open

in X ×G.
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Proof. For each basic open set I from a fixed countable open basis of X,

put BI = {y ∈ Y : I ⊆ Ay}. It is routine to check that BI is coanalytic, in

particular it has the Baire property. Then we can proceed as in the proof

of Lemma 4.2.

Finally we would like to show that, e.g. under sufficient determinacy as-

sumptions, Theorem 1.4 holds for functions satisfying weaker measurability

assumptions, as follows. We call a pointclass Γ adequate if it is an alge-

bra which contains the Borel sets and it is closed under taking Cartesian

products.

Theorem 5.4. Let Γ be an adequate pointclass such that the complements

of projections of sets in Γ can be uniformized by Baire measurable functions.

Let f : R→ R be a Γ-measurable function and let α be a countable ordinal.

Suppose that for every h ∈ R the difference function ∆hf is of Baire class

α. Then f itself is of Baire class α.

The assumption of Theorem 5.4 holds for Γ = ∆1
n (n < ω) under Pro-

jective Determinacy (see e.g. [11, Chapter 39 p. 327] or [9, Chapter 33 p.

627]). Below we only state and prove the key ingredient of its proof, namely

the suitable generalization of Lemma 4.2; then the statement follows as for

Borel measurable functions.

Lemma 5.5. Let X and Y be Polish spaces and let Γ be as in Theorem

5.4. Let α be a countable nonzero ordinal. Let B ⊆ X × Y be in Γ such

that the horizontal section By is in Σ0
α(X) for every y ∈ Y . Then there is

a comeager Π0
2(Y ) set G such that B ∩ (X ×G) is in Σ0

α(X ×G).

Proof. Let U ⊆ 2ω × X be a universal Σ0
α set, i.e. such that for every

A ∈ Σ0
α(X) there is a t ∈ 2ω with Ut = A. Let

P = {(y, t, x) ∈ Y × 2ω ×X :

((x, y) ∈ B ∧ (t, x) /∈ U) ∨ ((x, y) /∈ B ∧ (t, x) ∈ U)}.

Since Γ is an algebra which contains the Borel sets and is closed under

taking Cartesian products, we have P ∈ Γ(Y × 2ω ×X).

Note that (y, t) ∈ projY×2ω(P ) if and only if By 6= Ut. So

(1) {(y, t) ∈ Y × 2ω : By = Ut} = (Y × 2ω) \ projY×2ω(P ).

By our assumption on B, for every y ∈ Y there exists a t ∈ 2ω such that

By = Ut. By our assumption on Γ, there is a Baire measurable uniformizing

function of the set in (1); i.e. there is a Baire measurable function f : Y → 2ω

such that By = Uf(y) (y ∈ Y ).
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By Nikodým’s Theorem (see e.g. [11, (8.38) Theorem p. 52]), there is

a comeager Π0
2(Y ) set G such that f |G : G → 2ω is continuous. We have

(x, y) ∈ B if and only if (f(y), x) ∈ U , so

B ∩ (X ×G) = {(x, y) ∈ X ×G : ((f |G)(y), x) ∈ U}.

Since f |G is continuous, this showsB∩(X×G) is Σ0
α(X×G), as required.

Similar generalization is possible for Lemma 4.5 of the approach using

Lebesgue measure. However, we are far from understanding the precise con-

sistency strength of the difference property of the class of Borel measurable

functions or of the class of Baire class α functions. So we do not present

here any further analysis of the proofs.
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