On effectivization of Freiling's Axioms of Symmetry

Hiroshi Fujita

September 29, 2009

Freiling's Axiom of Symmetry $\left(A_{\aleph_{0}}\right)$ is the following statement: For every function $F: 2^{\omega} \rightarrow\left[2^{\omega}\right] \leq \omega$ which assigns a countable set of reals to each real, there exist two distinct reals, say a and b, such that $a \notin F(b)$ and $b \notin F(a)$.

Fact 1 (Freiling[1]). ZFC $\mid-A_{\aleph_{0}} \leftrightarrow \neg \mathrm{CH} . \triangleleft$
Galen Weitkamp has considered (in [3]) an effective version of $A_{\aleph_{0}}$.
Fix a recursive bijection $\langle\rangle:, \omega \times \omega \rightarrow \omega$. For each $a \in 2^{\omega}$ and $n \in \omega$, the real $(a)_{n} \in 2^{\omega}$ is defined by $(a)_{n}(k)=a(\langle n, k\rangle)$. In this way every real $a \in 2^{\omega}$ naturally codes a countable set $\left\{(a)_{n}: n \in \omega\right\}$.

Definition. Let Γ be a pointclass. Then $A(\Gamma)$ states: Let $f: 2^{\omega} \rightarrow 2^{\omega}$ be a function whose graph as subset of $2^{\omega} \times 2^{\omega}$ belongs to the class Γ, then there exist two distinct reals a and b such that

$$
\forall n \in \omega\left[x \neq(f(y))_{n} \& y \neq(f(x))_{n}\right] .
$$

Fact 2 (Weitkamp [3]).
(1) $\mathrm{ZF}+\mathrm{DC} \vdash A\left(\boldsymbol{\Sigma}_{1}^{1}\right)$.
(2) $A\left(\Pi_{1}^{1}\right) \leftrightarrow A\left(\Sigma_{2}^{1}\right) \leftrightarrow 2^{\omega} \not \subset L . \triangleleft$

Fact $2(2)$ gives an effective version of Freiling's Fact 1. However, there are some difficulties within Weitkamp's formulation:

1. Freiling has considered $A_{\text {null }}$ and $A_{\text {meager }}$ as well, replacing "countable" by "null" and "meager" respectively. It is not clear how we can modify Weitkamp's setting to handle these generalizations.
2. Giving a countable set of reals is not the same thing as giving its code. From a code you can easily obtain a countable set as Weitkamp does. But for each countable set $C \in\left[2^{\omega}\right] \leq \omega$ there exist uncountably many reals which codes C, and you do not know how to choose one.

To investigate this second point more closely, suppose we are given a relation $R \subset 2^{\omega} \times 2^{\omega}$ which is somehow nicely definable (Borel, analytic, or
anything). Suppose also that for every $x \in 2^{\omega}$ the vertical section $R_{x}=\{y$: $R(x, y)\}$ is nonempty and countable. In such a case can you always define a function $f: 2^{\omega} \rightarrow 2^{\omega}$ such that $R_{x}=\left\{(f(x))_{n}: n \in \omega\right\}$? For example, the following question should be a challenging exercise:

Question 3. Define a function $f: 2^{\omega} \rightarrow 2^{\omega}$ so that

$$
\left\{(f(x))_{n}: n \in \omega\right\}=\left\{y \in 2^{\omega}: y \text { is recursive in } x\right\}
$$

for every $x \in 2^{\omega}$. At which level of the arithmetical hierarchy can such f be?
From this point of view, the following reformulation seems more natural to me.

Definition. Let $A^{*}(\Gamma)$ state: For a relation $R \subset 2^{\omega} \times 2^{\omega}$ in Γ, if every vertical section R_{x} is countable, then there are two distinct reals a and b such that both $R(a, b)$ and $R(b, a)$ fail.

This is not always equivalent to Weitkamp's $A(\Gamma)$. We still have

$$
A^{*}\left(\Sigma_{2}^{1}\right) \leftrightarrow A^{*}\left(\Delta_{2}^{1}\right) \leftrightarrow 2^{\omega} \not \subset L,
$$

so $A^{*}\left(\Sigma_{2}^{1}\right)$ and $A\left(\Sigma_{2}^{1}\right)$ are equivalent. On the other hand, we have (by the Fubini Theorem)

$$
\mathrm{ZF}+\mathrm{DC} \mid-A^{*}\left(\boldsymbol{\Pi}_{1}^{1}\right) .
$$

Therefore $A^{*}\left(\Pi_{1}^{1}\right)$ is strictly weaker than $A\left(\Pi_{1}^{1}\right)$.
Our version has one obvious advantage. It is quite easy to formulate $A_{\mathrm{null}}^{*}(\Gamma)$ and $A_{\text {meager }}^{*}(\Gamma)$. Then by Fubini and Kuratowski-Ulam Theorems,

Fact 4. For every pointclass Γ,
(1) $\mathbf{L M}(\Gamma) \rightarrow A_{\text {null }}^{*}(\Gamma)$, and
(2) $\mathbf{B P}(\Gamma) \rightarrow A_{\text {meager }}^{*}(\Gamma) . \triangleleft$

It is amusing to point out that in certain cases these arrows are inverted.

Fact 5.

(1) $\mathbf{L M}\left(\Delta_{2}^{1}\right) \leftrightarrow A_{\text {null }}^{*}\left(\Delta_{2}^{1}\right)$, and
(2) $\mathrm{BP}\left(\Delta_{2}^{1}\right) \leftrightarrow A_{\text {meager }}^{*}\left(\Delta_{2}^{1}\right)$.

Here, I will give only a proof of (1), since (2) can be proved similarly.
We already know that $\mathbf{L M}\left(\Delta_{2}^{1}\right)$ implies $A_{\text {null }}^{*}\left(\Delta_{2}^{1}\right)$. To see the converse, suppose that $\mathbf{L M}\left(\Delta_{2}^{1}\right)$ fails. Then there is no random real over L. In other words, every real $r \in 2^{\omega}$ belongs to some null G_{δ} set with constructible code.

Let $U \subset 2^{\omega} \times 2^{\omega}$ be a universal G_{δ} set which is lightface Π_{2}^{0}. Then our hypothesis $\neg \mathbf{L M}\left(\Delta_{2}^{1}\right)$ can be written as

$$
\forall r \in 2^{\omega} \exists c \in 2^{\omega}\left[c \in L \& \mu\left(U_{c}\right)=0 \& r \in U_{c}\right] .
$$

where μ denotes the Lebesgue measure. Since the [...] part of the statement is Σ_{2}^{1}, the Novikov-Kondô-Addison Theorem gives a Δ_{2}^{1} function $\varphi: 2^{\omega} \rightarrow 2^{\omega}$ such that

$$
\forall r \in 2^{\omega}\left[\varphi(r) \in L \& \mu\left(U_{\varphi(r)}\right)=0 \& r \in U_{\varphi(r)}\right]
$$

Let $<^{*}$ be a Σ_{2}^{1} wellordering of $2^{\omega} \cap L$ into order-type ω_{1}. We may assume

$$
L \models\left[<^{*} \text { is a } \Sigma_{2}^{1} \text {-good wellordering }\right]
$$

in the sense explained in Section 5A of [2]. Now define $R \subset 2^{\omega} \times 2^{\omega}$ by

$$
R(x, y) \Longleftrightarrow \exists c \leq^{*} \varphi(x)\left[\mu\left(U_{c}\right)=0 \& y \in U_{c}\right]
$$

It is straightforward to see that every vertical section R_{x} is null and that every two reals a and b satisfy either $R(a, b)$ or $R(b, a)$ according to $\varphi(b) \leq^{*} \varphi(a)$ or not. Thus what remains to see is:

Lemma 6. The relation R is Δ_{2}^{1}.
Proof. Let $\operatorname{IS}(x, y)$ be the predicate that tells x codes the initial segment of \leq^{*} with top y. Exercise 5A. 1 of [2] shows that $V=L$ implies that IS is Δ_{2}^{1}. Even when $V \neq L$, the predicate

$$
\operatorname{IS}^{\prime}(x, y) \Longleftrightarrow x, y \in 2^{\omega} \cap L \& L \models \operatorname{IS}(x, y)
$$

is still Σ_{2}^{1}. We then have

$$
\begin{aligned}
\neg R(x, y) & \leftrightarrow \forall c \leq^{*} \varphi(x)\left[\mu\left(U_{c}\right)>0 \vee y \notin U_{c}\right] \\
& \leftrightarrow \exists b\left[b \in L \& \operatorname{IS}^{\prime}(b, \varphi(x)) \& \forall n \in \omega\left[\mu\left(U_{(b)_{n}}\right)>0 \vee y \notin U_{(b)_{n}}\right]\right]
\end{aligned}
$$

which gives a Σ_{2}^{1} description of negation of R. \triangleleft
This completes the proof of Fact 5.
Question 7. Does $A_{\text {null }}^{*}\left(\Sigma_{2}^{1}\right)$ imply $\mathbf{L M}\left(\Sigma_{2}^{1}\right)$?

References

[1] Ch.Freiling, Axiom of Symmetry, Throwing Darts at the Real Number Line, Jour. Symb. Logic, 51 (1986), pp.190-200.
[2] Y.N.Moschovakis, Descriptive Set Theory (2nd Edition), American Mathematical Society 2009.
[3] G.Weitkamp, The Σ_{2}^{1} theory of axioms of symmetry, Jour. Symb. Logic, 54 (1989), pp.727-734.

